search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 300–306, 2017 doi:10.1017/S1431927616012782


© MICROSCOPY SOCIETY OF AMERICA 2017


Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy


Andrew J. London,* Daniel Haley, and Michael P. Moody Department of Materials Science, University of Oxford, 16 Parks Rd, Oxford OX1 3PH, UK


Abstract: Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.


Key words: atom probe tomography, mass spectrum analysis, peak overlaps, peak deconvolution, atomic-scale analysis


INTRODUCTION


Atom probe tomography (APT) is a three-dimensional (3D) atomistic characterization technique which relies on time- of-flight mass spectrometry to infer elemental identities (Müller et al., 1968; Kelly&Larson, 2012). Therefore, correct identification of the peaks in the mass-to-charge state (m/z) spectrum is crucial in determining the correct mea- sured composition (Haley et al., 2015). Due to the limited mass-resolving power of APT, there is a difficulty in distin- guishing between certain ionic species. This is particularly challenging in organic (Narayan et al., 2012), oxide and ceramic materials (Kirchhofer et al., 2013; Mancini et al., 2014), which can produce complex mass spectra with molecular (Tsong, 1984) and multiply charged ions (Haydock & Kingham, 1980). However, peak overlaps can cause difficulties even with routine analysis of steels (Takahashi et al., 2011). With APT being applied to an increasing number of more complex materials (Seidman, 2007; Valley et al., 2014), there is a need to improve our analysis of the mass spectra. One area for improvement is the deconvolution of peak


overlaps. Peaks in the m/z spectrum may overlap directly (direct overlap) or a smaller peak may overlap the tail of a preceding peak (tail overlap). Tail overlap is often observed in laser pulsed mode due to the thermal transport from the tip (Vella et al., 2011) or in voltage mode due to an energy deficit (Müller & Krishnaswamy, 1974). In some cases an


*Corresponding author. andrew.london@materials.ox.ac.uk Received July 1, 2016; accepted December 20, 2016


isobaric overlap occurs, such as 54Fe/54Cr, were the atomic masses are very similar. Direct overlaps often occur when the separation of two peaks is smaller than a value which depends on the mass-resolving power, but typically <0.1 Da. Direct overlaps can lead to incorrect measurements of the composition, and tail overlap reduces the signal- to-background ratio (contrast) of peaks. Therefore, resolving any mass peak overlaps is critical to ensure an accurate compositional measurement. In other spectral analyses, where the peak shape or


position is known, peak fitting can be used to recover the total counts in each overlapped peak (Wojdyr, 2010). However, in APT, the peak shape is dependent on the ionic species and the position may be inexact due to inaccuracies during the calibration step. The peak shape can be estimated by machine learning to fit a peak shape to an experimental spectrum (Johnson et al., 2013), but this method requires a large quantity of data to produce a reliable fit. Peak overlaps may be resolved if they vary spatially and can be revealed by multivariate statistical analysis (Parish & Miller, 2010). However, in most cases the peak area may be estimated simply by integrating the counts from a specificm/z window or range (Miller, 2000). These ranged counts for each peak and knowledge of the natural isotopic abundances can be used to estimate the contribution of each ion to the overlapped peaks. These methods are well established for calculating the composition of the whole data set, but this discards any spatial information entirely. Therefore, we seek to improve the spatial resolution of this peak deconvolution method. Kuduz et al. (2004) showed that corrections to the m/z spectrum applied to a specific volume can yield improved


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284