search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 425–430, 2017 doi:10.1017/S1431927616012770


© MICROSCOPY SOCIETY OF AMERICA 2017


The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/ α-Fe Nanocomposite Permanent Magnetic Alloys


Kezhi Ren,1 Xiaohua Tan,1,* Heyun Li,1 Hui Xu,1 and Ke Han2


1School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai 200072, P. R. China 2National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA


Abstract: We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.


Key words: atom probe, nanocomposite permanent alloy, melt spinning, microstructure, magnetic property


INTRODUCTION Nanocomposite permanent magnetic materials, first repor- ted by Coehoorn et al. (1988), attracted much attention because of their high remanence, high theoretical maximum magnetic energy product (Schrefl et al., 1994b) and low rare earth content. Nd2Fe14B-based nanocomposites are composed of a fine mixture of hard magnetic Nd2Fe14B phase and soft magnetic α-Fe phase. The exchange coupling between soft and hard magnetic grains with nanometer size enhances the remanence, however, it decreases the coercivity (Schrefl et al., 1994a). The substitution of Dy for Nd is an effective method to improve the coercivity in nanocomposite alloys by increasing the anisotropy field of the hard magnetic Nd2Fe14B phase (Chen et al., 2004; The et al., 2007). Unfortunately, Dy has been considered as an unfavorable element because of its increased price and uncertain avail- ability. Researchers have, therefore, been making efforts to reduce Dy content or search for Dy-free nanocomposite alloys. Nb and Ga were reported to optimize the microstructure and improve the magnetic properties in the nanocomposite alloys (Ping et al., 1999, 2002). In melt-spun nanocomposite ribbons, however, the role of Nb and Ga additions on the magnetic properties is unclear. Therefore, the effects of Nb and Ga on the magnetic properties of nanocomposite alloys need to be studied further. In this work, Nd2Fe14B/α-Fe nanocomposite alloys with


minor Dy addition (Nd8.5Fe76Co5Zr3B6.5Dy1) and Dy free (Nd9.5Fe76Co5Zr3B6.5,Nd9.5Fe75Co5Zr3B6.5Nb1,andNd9.5Fe75.4 Co5Zr3B6.5Ga0.6) were prepared by melt spinning. The effects of Dy, Nb, and Ga on both the microstructure and the mag- netic properties were investigated. The partitioning of Dy, Nb,


*Corresponding author. tanxiaohua123@shu.edu.cn Received June 22, 2016; accepted December 21, 2016


and Ga in Nd2Fe14B/α-Fe nanocomposites was examined by atom probe tomography (APT) and related to magnetic prop- erty improvement. This work provides a route for designing nanocomposite permanent magnets with high performance and low cost.


EXPERIMENTAL


Ingots with nominal composition Nd9.5Fe76Co5Zr3B6.5 (A-0), Nd8.5Fe76Co5Zr3B6.5Dy1 (A-Dy), Nd9.5Fe75Co5Zr3B6.5Nb1 (A- Nb), and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 (A-Ga) (at%) were pre- pared by arc-melting pure metals and Fe–Balloy


in


an argon atmosphere. Ribbon samples were obtained by melt spinning in an argon atmosphere at a wheel speed of 10–30 m/s. The melt-spun ribbons were annealed between 963 and 983K for 4–5min at 3×10−3 Pa in order to develop a nanocrystalline microstructure. The samples with optimum heat treatment are shown in Table 1. The magnetic properties of the ribbon samples were measured using a Lake Shore 7407 (Lake Shore Cryotronics, Westerville, OH, USA) vibrating sample magnetometer with a maximum applied field of 1.8T. X-ray powder diffraction (XRD) patterns were recorded in a D/Max-2550 diffractometer (Rigaku Corporation, Tokyo, Japan) with Cu-Kα radiation. Transmission electron micro- scopy (TEM) was performed using a JEM 2010F (JEOL Ltd, Tokyo, Japan),witha field emission gun operating at 200 kV. Planar TEM samples were prepared by grinding ribbons to a thickness of 30 µm and subsequent electropolishing in a solu- tion of 5% HClO4+95% ethanol at 20V at 243±5K. APT samples were prepared by a two-stage electropolishing proce- dure. The first stage was performed in an electrolyte of 25 vol% perchloric acid in 75 vol% acetic acid at 20V, and the second stage was performed in an electrolyte of 2% perchloric acid in 2-butoxyethanol at 20V. The APT characterizations were carried out in a CAMECA Instruments LEAP4000×-HR


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284