search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Comparison of APT Cluster Analysis Methods 367 There are several known limitations of APT, including


concerns that the reconstruction algorithms used are too simplistic. For instance, for the analysis of RPV steels, one major concern is that trajectory aberrations, due to differ- ence of the evaporation field between the solute clusters and the surrounding matrix, could bias their measured chemical composition and structure. Other concerns, include (i) the fact that APT cannot directly detect the presence of vacancies, (ii) the spatial resolution is imperfect, (iii) the detection efficiency is imperfect, and (iv) the very small analyzed volume may not be fully representative of a mate- rial as complex as a steel (Miller et al., 1996; Miller, 2000; Gault et al., 2012). Demonstrating that cluster detection algorithms accu-


rately characterize the multitude of microstructural features observed in RPV steels is also challenging. The very small size of these solute clusters and their apparently dilute nature makes their identification, inside three-dimensional (3D) data sets containing tens or hundreds of millions of atoms, very challenging. The very small size of the features means that a relatively high fraction of the associated atoms are interface atoms, and thus their measured sizes, number density, and compositions can also strongly depend on the algorithms used to detect them. Currently, there is no agreement on what constitutes the most “appropriate” ana- lysis methodology (Marquis & Hyde, 2010). Furthermore, all methods require the use of user-defined parameters and their selection is not trivial. Methods based on the maximum separation method (MSM) (Hyde & English, 2001; Heinrich et al., 2003; Kolli & Seidman, 2007; Morley et al., 2009; Styman et al., 2013) are most widely used, but there are many variants and options at each stage of the process, including defining the chemical identities of core atoms, selecting an appropriate maximum separation distance, identifying which noncore atoms also belong to each cluster and whe- ther to apply an erosion step to minimize interface effects. Other methods, based on concentration threshold criteria, have also been developed and used (Lefebvre et al., 2016) by several groups. As for MSMs, the definition of the chemical identities and the selection of appropriate parameters is an important step to get quantitative and reliable results. In this work, simulations have been used to create


representative APT data sets with known microstructures. The microstructural data have been degraded to simulate the


limitations of APT and the resulting data have been analyzed blind using two analysis methodologies. The results have been compared with each other and the strengths and weaknesses of the methods assessed. This builds on previous work by Hyde et al. (2011) by using multiple analyses methods, and adding the effect of local magnification.


METHODOLOGY


Simulated Microstructures In all, six simulated microstructures, each 60×60×60nm3, of a simple ferritic alloy were created (bcc lattice with a lattice parameter of 0.28 nm). The simulated microstructures were populated with clusters with a number density of between 5 and 10× 1023m−3. Three different cluster sizes were cho- sen (approximate radii of ~0.5, 1.0, and 1.5nm) with each cluster having a solute content of either ~50 or 100%. Thus each simulatedmicrostructure contained multiple clusters of different sizes and compositions (~18 of each radius and composition combination). A bulk alloy concentration of ~1% was chosen. The simulated microstructures also took into account experimental artifacts. In three data files, the imperfect detection efficiency of the CAMECA LEAP 3000 or 4000HR was simulated by randomly removing 60% of the atoms. In four of the simulations, uncertainties in the atom positions were modeled by adding a Gaussian scatter to the coordinates (2σ = 0.5 or 1 nm for the X and Y coordinates, and 2σ = 0.1nmfor the Z coordinates). The resulting matrix of simulated microstructures is summarized in Table 1. In addition, three of the simulations were further degraded by modeling the compression of atoms in reconstructed APT data associated with the local magnification effect (only simulation 6 was analyzed here, yielding a total of seven datasets for analysis). The compression algorithm used is detailed in the next section. The combinations were designed to enable the influence of experimental artifacts on the detectability and characterization of clusters to be assessed. A further nine simulated microstructures were


generated for an alloy with a bulk solute concentration of 4% and then a further 12 simulated microstructures were created to model core shell cluster structures. The analysis of these additional simulations will be the subject of a future paper.


Table 1. Simulated Microstructures and Simulations of Experimental Artifacts. Cluster


Simulation no.


1 2 3 4 5 6


Radius (nm) 0.5, 1.0, 1.5


0.5, 1.0, 1.5 0.5, 1.0, 1.5 0.5, 1.0, 1.5 0.5, 1.0, 1.5 0.5, 1.0, 1.5


Cluster Solute Concentrations (%)


~50 and 100 ~50 and 100 ~50 and 100 ~50 and 100 ~50 and 100 ~50 and 100


Bulk Solute Concentration (%)


1 1 1 1 1 1


Detection Efficiency


100 40


100 40


100 40


Lateral Scatter (Width of Gaussian Applied to X and Y Coordinates) (nm)


NAa NA 0.5


0.5a 1.0


1.0a aThese simulated microstructures were further degraded to simulate the increased density of atoms associated with local magnification effects.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284