search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
222 Lu Zhao et al.


collected by a position-sensitive detector that determines the time and the location of the impact. Assuming that ions are instantaneously accelerated without an initial velocity and that the whole potential energy is converted into kinetic energy, the mass over charge ratioM(m/n) of the ions can be written as


M= m n =kV


t2 l2 ; f (3)


the specimen, l the ion total flight distance and tf thetimeof flight of the collected ion. Mass resolution is one of the key performance parameters


where k = 0.193m2/kV/µs−2, V is the total voltage applied to


of modern atom probe. For example, both quantitative composition measurements and three-dimensional reconstruc- tions rely on the mass spectrum quality and processing. It is well known that the conventional voltage pulsed atom probe is limited in mass resolution by the energy spread caused by voltage pulsing, the mass resolving power can be <100 in a straight flight-path atom probe (Krishnaswamy, 1974; Krishnaswamy & Muller, 1974; Kelly et al., 1996; Cerezo & Vaumousse, 2001). In fact, ions generally leave the sample at slightly different times relative to the pulse maximum (start-time), due to the stochastic nature of the evaporation process (Gault et al., 2012). This results in some ions of the same nature acquiring slightly smaller kinetic energies. In addition, the emitted ions experience a time-varying field during the accelerating region. The ions gain systematically less kinetic energy with respect to the full potential energy applied to the tip. The atom probe design generally includes a counter electrode,


positioned very close to the tip, which minimizes the effect of the finite acceleration time. Although this configuration reduces energy deficit, some deficit will still remain. One of the primary goals in atom probe tomography instrumentation is to improve


atom probe. It is clear that each new device always introduces unexpected shortcomings and complicates the instrument. An alternative method is to achieve FE by applying a


laser pulse to briefly increase the temperature of the apex of the sample (Kellogg & Tsong, 1980). The energy deficits are eliminated as the DC field due to the standing applied voltage promotes FE and accelerates the emitted ions. This improves mass resolution. Even so, significant degradations of mass resolution are experimentally observed in the analysis of some highly electrically resistive materials, for example, MgO and intrinsic silicon at cryogenic temperature (Arnoldi et al., 2014; Sévelin-Radiguet et al., 2015). In LAAP, the mass spectrum quality also depends on factors including the laser wavelength, laser power, and shank angle (Bunton et al., 2007; Houard, 2010; Houard et al., 2010). Many authors have reported that the peak temperature at the tip surface must be maintained sufficiently low to avoid surface diffusion which has an impact on the APT spatial resolution (Cerezo et al., 2007; Gruber et al., 2011). In addition, low thermal conductivity could reduce the mass resolving power to values as lowas 100–200 fullwidth at half maximum


(FWHM), for amass-to-charge-state ratio around 30, such as 56Fe2+(Houard et al., 2011).Decreasing the temperature could enhance the mass resolution, but a correct composition measurement for some materials, such as GaN and AlN, needs also an appropriate laser power/DC electric field ratio (Mancini et al., 2014). As a conclusion, the optimization in laser pulse mode is generally cumbersome and prevents the routine application of the laser pulsemode for some materials. Table 2 compares the performance of the two atom probe modeswith different configurations. It is clear that none of the instruments could satisfy all the critical requirements. Our theoretical study shows that the mass spectrum can be


mass resolution without sacrificing the spatial resolution, the field-of-view, and the detection efficiency. Several approaches have been proposed to compensate or reduce these spreads, such as the Poshenreider lens (Poschenrieder, 1971, 1972), the reflectron (Cornish & Cotter, 1993), and double-electrodes (Kelly et al., 1995; Cerezo et al., 2000), each have been applied to different generations of instruments to improve mass resolution. Table 1 compares the different devices combining with


improved by modifying the shape of the applied voltage pulsetohavea flat top, a sharp front, and leading edge associated with a short tip-to-electrode distance (Zhao et al., 2015). However, in order to optimize the energy spread, the ion must also be evaporated on a really flat and stable part of the pulse. Inspired by the proposition of synchronized laser pulse and voltage pulse in Kelly (2011) and the pump-probe method, we performed laser pulsing evaporation with a dynamic field andachievedansignificant improvement in mass resolution.


Table 1. Summary of the Solution for Optimizing the Performance of the Time-of-Flight Mass Spectrometer in Atom Probe, the Number of ‘+’ From One to Four Represents the Level of Improvement.


Solutions Reflectron Method


Local electrode Short tip-to-electrode distance (Kelly & Larson, 2000)


Advantage


Simple and no additional device


Curved field (Cornish & Cotter, 1993) Achieve time-focusing on the detector


Double electrode Post-acceleration (Cerezo et al., 2000) Simple Double electrode Post-deceleration (Kelly et al., 1996) Simple


Degradation of spatial resolution/reduction of the detection efficiency


Perturb tip field/limited to a few kV of post-acceleration


Valid only over a limited range of mass


Disadvantage Mass Resolution


+ (compensate dynamic effects)


++++ ++ +++


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284