search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
446 Mark J. Hagmann et al.


contact with radius a, the spreading resistance is given approximately by RS = 1/4aσ,where σ is the electrical con- ductivity (Gelmont & Shur, 1993). There is also a spreading capacitance, but its effects may be neglected at the frequencies of theMFC. Scanning spreading resistance microscopy (SSRM) is a means for carrier profiling in semiconductors, which provides a spatial resolution as fine as 1nm. This method is based on measuring the spreading resistance by inserting heavily doped diamond nanoprobes into the semiconductor (Vandervorst et al., 2014). However, in our measurements, the minority and majority carriers at a sub-nanometer spot, near the tunneling junction, flow through the spreading resistance (~1MΩ), which may be determined because of its strong effect on the attenuation of the measured MFC. Figure 8 shows an equivalent circuit for determining the


Figure 7. Expanded graph of the mean power at the second harmonic for 24 consecutive scans with an n-type GaN sample in the scanning tunneling microscope, with error bars.


In these figures, the frequency is offset to make the values on the abscissa readable (i.e., 20Hz is added to 74.254MHz, etc.). Figures 4 and 6 show the power at the fundamental frequency and Figures 5 and 7 are for the second harmonic. Figures 6 and 7 are expanded and error bars are added to enable interpretation. In each case, the semiconductor had a bias of −9V relative to the tip for a forward-biased tunneling junction. The DC tunneling current was 1μA, the resolution bandwidth was 2 Hz, and the laser had an average power of 60mW.The error bars correspond to the mean plus or minus 1 SD, based on the 24 consecutive scans. Figures 6 and 7 show that the apparent linewidth is 2.6Hz at the two harmonics and this value is primarily due to the 2-Hz resolution bandwidth of the spectrum analyzer. Figures 6 and 7 show that the MFC with an n-type GaN


sample has a power at the second harmonic that is 9 dB less than that at the fundamental frequency. However, equation (1) shows that with a metal sample, the power at the second harmonic is 94% of that at the fundamental frequency. Furthermore, with the semiconductor the power at the fun- damental frequency is 25 dB less than that with a gold sam- ple, using the same apparatus and settings. These differences may be understood by considering the different phenomena with metal and semiconductor samples. High-frequency currents in theMFCflow on the surface of a metal sample, so it is possible to make measurements with a bias-T in the sample circuit as shown in Figure 1. However, it has already been noted that with a semiconductor, sample minority carriers are injected to create a sub-nanometer spot of sur- face charge that is neutralized, by dielectric relaxation, as the injected carriers diverge and interact with the converging majority carriers over a distance of ~20 μm. Whenever current is injected at a small spot on the


surface of an object, the “spreading resistance” at that spot is the dominant component of the resistance of any other contact on the object.This effect is seen using a semiconductor sample in an STM (Flores & Garcia, 1984). For a circular


power at the harmonics of the MFC for a grounded semi- conductor sample in an STM. For the case of a metal sample, the circuit elements between points P1 and P2, which repre- sent the grounded semiconductor, are deleted. Thus, we would have the circuit we have already described with only the constant current source In, the shunting capacitance CS, and the load resistance RL, to obtain equation (1). However, point P1 represents the location of the tunneling junction and point P2 represents the location of the probe. In our measurements, the semiconductor with a thickness of 0.5mm was in a grounded sample holder. Resistances RS1 and RS2 are, respectively, the spreading resistance at the tunneling junction and at the probe, and they have small physical size. The resistance from P1 to ground is RS1 and the resistance from P2 to ground is RS2. The resistance from P1 to P2 equals RS1+RS2. The capacitance C12, which is distributed over the length of the semiconductor from P1 to P2, is that between the upper surface of the semiconductor and ground. For this equivalent circuit, the microwave power


PL = RLI2 0


2 2


2 + R3 RS2


R2 +RL2 ;


whereR3  RS2 + RS2RL RS2RL


: RS1 -ω2RS1R3CSC12 ðÞ+ω2 RS1CS +R3CS +R3C2 +R3C2 2 ð2Þ (3) I0 is the root-mean-square value of the current from the


generator, which represents the constant current source in the tunneling junction. For applications of interest in char- acterizing the semiconductors, RS1 = 1MΩ, RS2 = 1kΩ, RL = 50 Ω, R3 = 1kΩ, CS = 6.4 pF, and C12 = 12 pF. Thus, for frequencies near the first few harmonics, equation (2) may be simplified to obtain the following expression:


PL = RLI2 0 4 +ω2R2 S1C2 S +ω4R2 S1R2 S2C2 SC2 12


Figure 9 shows the microwave power as a function of the spreading resistance at the tunneling junction, where PL was


: (4)


delivered to the load, at a specific harmonic with the angular frequency ω, is given by the following expression:


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284