search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
250 N. Rolland et al.


configurations in which no atom is actually being evaporated from the center of the apex. Compared to the voronoï method, this approach is much faster. Also, the evaporated volume can now be computed all along the tip shape evolu- tion, contrary to the former approach. This will be required for the new reconstruction algorithms.


RECONSTRUCTION ALGORITHM


The proposed reconstruction algorithms proceed quite similar to the method proposed by Larson et al. (2012). In a first stage, the model is run on a given input structure representing the experimental sample. The output of the


model is a sequence of surfaces, describing the progressive field evaporation of the sample. Each of these surfaces cor- responds to a total evaporated volume (delimited by the field of view), computed as the sum of the infinitesimal volumes associated to the preceding surfaces in the sequence. In practical, these surfaces are discretized with a constant cur- vilinear abscissa step and we compute the surface normal to each point. Then, a detector radial distance is associated to each point assuming a basic linear projection law D = kθθ, where D is the radial distance on the detector, kθ the pro- jection parameter, and θ the launch angle at the tip surface. But while in standard reconstruction algorithms θ is the polar angle corresponding to a given position on the spherical apex, it is now associated to the angle between the surface normal and the revolution axis (see for instance Fig. 3a, in the particular case θ = θV). Note that the projec- tion parameter simply equates to the detector radius divided by the field of view θV. During a full reconstruction process, for a given ion of


the experimental data set, the corresponding total evapo- rated volume is computed as the sum of the atomic volumes of the preceding ions, taking into account the detection efficiency. From this volume, we determine the two surfaces of the model sequence between which the ion should be inserted. On each of these surfaces, we find the two points between which the ion should be inserted from the ion detector radial distance. Eventually, the ion position in the 3D reconstruction is calculated by mean of a linear inter- polation both in depth and lateral positions. The quality of the reconstruction will depend on the accuracy of the input structure. Here two versions of the reconstruction algorithm are proposed, depending on the way to input the structure. Those versions correspond, respectively, to the extensions of the cone angle and voltage curve standards reconstruction algorithms.


Cone Angle Version


This first version of the algorithm is a direct application of the model in its original form. The input parameters are the initial radius of curvature, the shank angle and the field of view θV on the tip surface, similarly to the standard cone angle algorithm. In addition, several interfaces can be input, with their position and field ratio. The surface shape is


computed all along the evaporation (as described in the Model section) and used to reconstruct the data set as explained above. This version is recommended if the geometry of the sample is well known (constant shank angle, initial radius of curvature, and precise interface positions), by mean of correlative microscopy for example, or if the voltage curve suffers from bias (analysis conditions have been modified during the experiment, for instance).


Voltage Curve Version


Alternatively, one can use the voltage curve as an evidence of the radius of curvature evolution at the tip apex, without further assumption of the initial sample shape. In this case, the input parameters are the Eβ0 factor of the top layer at the beginning of the evaporation and the field of view θV, simi- larly to the standard voltage curve algorithm. Like the cone angle version, several interfaces can also be input with their depth and field ratio. In the former version, the apex radius of curvature evolution was driven by the tangential con- tinuity at the base of the field evaporated area. Here, at each stage, the apex radius of curvature is found thanks to the experimental applied voltage curve. Indeed, each step cor- responds to a given total evaporated volume that can be associated to a given voltage on the voltage curve (see for instance Fig. 6a). This voltage is converted to a radius of curvature thanks to the classical relationship R = V/Eβ, where the Eβ factor is that of the current tip apex layer, at the


considered stage of the evaporation.A schematic sequence of five surfaces obtained from the algorithm during the transi- tion from a layer to another is depicted Figure 4. The two first


Figure 4. Principle of the voltage curve version of the new recon- struction algorithm. A high field red layer on top of a low field blue layer is considered. Those layers are separated by the inter- face 1, with depth z1 and field ratio f1. The hemispherical radii of the consecutive surfaces during evaporation are obtained from the classical R=V/Eβ0 relationship, taking into account the field ratio for the second layer (R=f1V/Eβ0). When both layers are contained within the field of view θV, it is necessary to model the second layer surface by a Delaunay surface. This surface is deter- mined from the field ratio and the tangential continuity at the interface (purple arrow).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284