search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 255–268, 2017 doi:10.1017/S1431927617000277


© MICROSCOPY SOCIETY OF AMERICA 2017


Automated Atom-By-Atom Three-Dimensional (3D) Reconstruction of Field Ion Microscopy Data


Michal Dagan,1 Baptiste Gault,1,2 George D. W. Smith,1 Paul A. J. Bagot,1 and Michael P. Moody1,*


1Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK 2Max Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf, Germany


Abstract: An automated procedure has been developed for the reconstruction of field ion microscopy (FIM) data that maintains its atomistic nature. FIM characterizes individual atoms on the specimen’s surface, evolving subject to field evaporation, in a series of two-dimensional (2D) images. Its unique spatial resolution enables direct imaging of crystal defects as small as single vacancies. To fully exploit FIM’s potential, automated analysis tools are required. The reconstruction algorithm developed here relies on minimal assumptions and is sensitive to atomic coordinates of all imaged atoms. It tracks the atoms across a sequence of images, allocating each to its respective crystallographic plane. The result is a highly accurate 3D lattice-resolved reconstruction. The procedure is applied to over 2000 tungsten atoms, including ion-implanted planes. The approach is further adapted to analyze carbides in a steel matrix, demonstrating its applicability to a range of materials. A vast amount of information is collected during the experiment that can underpin advanced analyses such as automated detection of “out of sequence” events, subangstrom surface displacements and defects effects on neighboring atoms. These analyses have the potential to reveal new insights into the field evaporation process and contribute to improving accuracy and scope of 3D FIM and atom probe characterization.


Key words: field ion microscopy, 3D reconstruction, atomic resolution, crystal defects


INTRODUCTION Materials performance is intimately linked tomicrostructural architecture at the atomic scale. The continued development of models to explain mechanical properties, and ultimately design new and improved materials is therefore critical for an increasing number of applications. However, direct imaging in three dimensions (3D), not only all constituent atoms within a material, but also vacancies and other types of defects, has proven to be beyond the resolution limit of most current conventional microscopy techniques, and remains a formidable challenge. For example, such atomic-scale char- acterization capabilities are essential in radiation damage studies. A remaining hurdle in the development of nuclear fusion power generation is the lack of materials that can withstand the extreme operating conditions inside the reactor (Bolt et al., 2002; Mansur et al., 2004). A thorough under- standing of radiation-induced degradation mechanisms of the internal microstructure under such conditions is therefore of paramount importance. Recent efforts in electron microscopy have proposed


complex solutions to atomic-scale tomographic imaging of materials (Li et al., 2008; Azubel et al., 2014; Xu et al., 2015). Field ion microscopy (FIM) was the first microscopy tech- nique to image individual atoms (Müller & Bahadur, 1956), lattice defects in metals including single vacancies (Speicher et al., 1966) and interstitials and extended dislocations (Fortes et al., 1968; Smith et al., 1968). In contrast to other


*Corresponding author. michael.moody@materials.ox.ac.uk Received July 8, 2016; accepted January 24, 2017


high-resolution microscopy techniques, FIM relies on the ionization of inert gas atoms from prominent positions on the specimen surface, exploiting an intense electric field. The electric field is generated at the apex of the very sharp needle- shaped specimen (Gault et al., 2012)maintained at cryogenic


temperature and biased to a few kV. The divergent electric field drives the ions away from the specimen and onto a phosphor screen, creating a highly magnified, quasi- stereographic, 2D projection of the atomic arrangement at the surface of the specimen. A schematic illustration of the FIM set-up is shown in Figure 1a. Voltage pulses super- imposed on the DC voltage enable a highly controlled removal of the atoms constituting the specimen via field evaporation. Although each FIM image is intrinsically 2D, this procedure results in a series of images, each representing a “snapshot” of the surface over the course of the field eva- poration process. As the depth of the specimen is probed by the removal of the constituent atoms, the images progres- sively provide 3D atomic information on the specimen. Ground-breaking research in the 1960s and 1970s


demonstrated the unique insights FIM can bring into the study of fine-scale radiation damage. In a series of experi- ments, Seidman et al. directly imaged the early stages of radiation damage, manifesting as very small, atomic-scale defects in the crystal lattice by developing a novel 3D FIM approach (Seidman, 1978; Wei & Seidman, 1979; Seidman et al., 1981; Wei et al., 1981). In these experiments, the nature and spatial distribution of single vacancies and larger vacancy clusters were measured across 3D volumes of the specimens. As these experiments predated digital data collection, FIM imageswererecordedon film and analyzed manually.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284