search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Segregation and N Measurement in Steel by APT 395 REFERENCES


CAHN, J. (1962). The impurity-drag effect in grain boundary motion. Acta Metall 10, 789–798.


FELFER, P., RINGER, S.P. & CAIRNEY, J.M. (2011). Shaping the lens of the atom probe: Fabrication of site specific, oriented specimens and application to grain boundary analysis. Ultramicroscopy 111, 435–439.


GAULT, B., DANOIX, F.,HOUMMADA, K.,MANGELINCK,D.&LEITNER,H. (2012a). Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182–191.


GAULT, B., MOODY, M.P., CAIRNEY, J.M. & RINGER, S.P. (2012b). Chapter 4. In Atom Probe Microscopy, Hull, R., Jagadish, C., Osgood, R.M.J., Parisi, J. & Wang, Z.M. (Eds.), pp. 74–81. New York: Springer Science.


GIANNUZZI, L.A. & STEVIE, F.A. (2005). Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. New York: Springer Science.


GOUNÉ, M., DANOIX, F., ÅGREN, J., BRÉCHET, Y., HUTCHINSON, C.R., MILITZER, M., PURDY, G., VAN DER ZWAAG,S.&ZUROB, H. (2015). Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Mater Sci Eng R Rep 92,1–38.


GUO, M., PANAHI, D., VAN LANDEGHEM, H., HUTCHINSON, C.R., PURDY,G. & ZUROB, H.S. (2015). A comparison of ferrite growth kinetics under denitriding and decarburizing conditions. Metall Mater Trans A 46, 2449–2454.


HILLERT,M.&SUNDMAN, B. (1976).Atreatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall 24, 731–743.


KITAGUCHI, H.S., LOZANO-PEREZ,S. & MOODY, M.P. (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147,51–60.


MARCEAU, R.K.W., CHOI,P. & RAABE, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239–247.


MILLER, M.K. (2000). Atom Probe Tomography: Analysis At the Atomic Level. New York: Kluwer Academic, Plenum Publishers.


MIYAMOTO, G., SHINBO,K.&FURUHARA, T. (2012). Quantitative measurement of carbon content in Fe–C binary alloys by atom probe tomography. Scripta Mater 67, 999–1002.


PHILIPPE, T., DE GEUSER, F., DUGUAY, S., LEFEBVRE, W., COJOCARU- MIRÉDIN, O.,DA COSTA,G.&BLAVETTE,D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109, 1304–1309.


PURDY,G.R.&BRECHET, Y.J.M. (1995). A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels. Acta Metall Mater 43,3763–3774.


SHA, W., CHANG, L., SMITH, G.D.W., CHENG,L. & MITTEMEIJER, E.J. (1992). Some aspects of atom-probe analysis of Fe-C and Fe-N systems. Surf Sci 266, 416–423.


SOZINOV, A.L. & GAVRILJUK, V.G. (1999). Estimation of interaction energies Me-(C, N) in f.c.c. iron-based alloys using thermo-calc thermodynamic database. Scripta Mater 41, 679–683.


THOMPSON, K., LAWRENCE, D., LARSON, D.J.,OLSON, J.D., KELLY, T.F. & GORMAN, B. (2007). In situ site-specific specimen prepara- tion for atom probe tomography. Ultramicroscopy 107, 131–139.


THUVANDER, M., WEIDOW, J., ANGSERYD, J., FALK, L.K.L., LIU, F., SONESTEDT, M., STILLER,K.&ANDRÉN, H.-O. (2011). Quantitative atom probe analysis of carbides. Ultramicroscopy 111, 604–608.


VAN GENDEREN, M.J., SIJBRANDIJ, S.J., BÖTTGER, A.,MITTEMEIJER, E.J. & SMITH, G.D.W. (1997). Atom probe analysis of initial decomposition of Fe-N martensite. Mater Sci Technol 13, 806–812.


VAN GENT, A., VAN DOORN, F.C. & MITTEMEIJER, E.J. (1985). Crystallography and tempering behavior of iron-nitrogen martensite. Metall Trans A 16, 1371–1384.


VAN LANDEGHEM, H.P., LANGELIER, B., PANAHI, D., PURDY, G.R., HUTCHINSON, C.R., BOTTON, G.A. & ZUROB, H.S. (2016). Solute segregation during ferrite growth: Solute/interphase and substitutional/interstitial interactions. JOM 68, 1329–1334.


VOLKERT, C.A. & MINOR, A.M. (2007). Focused ion beam micromachining. MRS Bull 32, 389–399.


ZIEGLER, J.F. (2013). SRIM: The Stopping and Range of Ions in Matter. Version 2013.00, www.srim.org


ZUROB,H.S., PANAHI,D., HUTCHINSON, C.R., BRECHET,Y. & PURDY,G.R. (2013). Self-consistent model for planar ferrite growth in Fe-C-x alloys. Metall Mater Trans A 44,3456–3471.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284