search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
256 Michal Dagan et al.


The 3Dreconstruction of the analyzed volumes was therefore heavily restricted by the time-consuming manual analysis. More recently, 3D FIM was further advanced by the


development of procedures for the digital-stacking of time- ordered images (Vurpillot et al., 2007), applied, for example, to the investigation of Guinier-Preston (GP) zones in steels (Danoix et al., 2012), nitrides in Fe–Cr alloys (Jessner et al., 2009) and fine-scale precipitates in CuFeNi (Cazottes et al., 2012). Theoretically these images evolve, atom-by-atom and layer-by-layer, where each slice approximately represents a constant increment in the depth of the analysis. The stacking parameters can also be calibrated to match prominent crystallographic features in the specimen (i.e., spacing between atomic planes). Bending of the stack can be performed to account for the highly curved specimen shape. This procedure proved highly successful to uncover features that did not display clear contrast on the 2D FIM images but could be directly observed in a cross-section of the 3D FIM reconstruction, such as dislocations extending along the tip axis (Vurpillot et al., 2007). However, this image stacking approach can become limiting for the precise identification of individual point defects in the matrix. In recent years, FIM has been somewhat overshadowed


by the emergence of wide-field-of-view atom probe tomo- graphy (APT). APT is similarly based on the concept of field evaporation of specimen atoms from the surface (Gault et al., 2012). The evaporated ions strike a position-sensitive detector and their time-of-flight is measured, informing as to their chemical identity. Ultimately, using the digitally recorded detector coordinates and a reverse-projection model, a 3D atomistic reconstruction of the tip is obtained (Vurpillot et al., 2013). The automated 3D atom-by-atom imaging combined


with highly resolved elemental discrimination offered by APT provides significant advantages in comparison with FIM. However, these strengths are achieved at the expense of detection efficiency, that is, due to the incorporation of the microchannel plates in current APT position-sensitive detectors, a significant number of ions striking the detector are not registered by the experiment. Although the maxi- mum achievable detection efficiency in the latest generation of commercial atom probe instruments is reported to reach 80%, in the case of many existing reflectron-fitted instru- ments up to 65% of the atoms evaporated from the specimen are stochastically omitted from the final analysis (Kelly & Miller, 2007; Miller et al., 2012). The incomplete nature of APT information makes it impossible to directly image every atomic site on the lattice and requires the application of advanced methods to characterize individual sites (Moody et al., 2014). Reliable characterization of atomic-sized defects such as vacancies and interstitials is therefore not possible with APT. In contrast, FIM is not subject to the same limitations of


detection efficiency. The imaging of each surface atom in the analysis is effectively formed by the combined contributions of thousands of imaging gas ions per second. The data therefore contains full representation of all atoms in the


analyzed volume, and enables the detection of defects as small as vacancies that could not be characterized with APT (Dagan et al., 2015). In order to fully utilize the unique imaging capabilities


of FIM and explore larger volumes accurately and con- sistently, this study introduces the first automated “atom-by- atom” approach to 3D FIM data reconstruction. The proce- dure relies on minimal underlying assumptions, is sensitive to atomic information and subangstrom displacements in the imaged positions of the atoms, and results in an atom- ically resolved 3D reconstruction of the crystalline lattice. The proposed reconstruction procedure is demonstrated here for the analysis of tungsten, currently a leading candi- date for plasma-facing components of nuclear fusion reac- tors (Davis et al., 1998; Neu et al., 2005; Philipps, 2011). However, the method is applicable to a wide range of mate- rials which can be imaged by FIM such as steels and catalyst metals.


The approach developed here for reconstructing FIM


data maintains the truly atomistic nature of the information in FIM images. We demonstrate the procedure for FIM analysis of the atomically resolved [2,2,2] pole of a tungsten needle, characterized by 7771 images, describing the eva- poration of 69 crystallographic layers in-depth into the material and comprising 2450 tungsten atoms. We demon- strate how each atom can be automatically identified across the sequence of images, its position tracked across all images, from the time it is first revealed on the surface of specimen to the instant when it is field evaporated. Ultimately, all of this information is brought together to reconstruct original position of each atom on the crystal lattice and create a complete atomistic 3D image of the analyzed volume. The main stages of the reconstruction algorithm are demon- strated, and significant challenges in the reconstruction procedure discussed. Optimal implementation of the algo- rithm requires high-quality data underpinned by a high level of control in the evaporation process, atomic resolution, and an ordered evaporation structure. However, it can also be implemented on FIM data sets that do not possess all of these properties. To explore the implementation of the algorithm to more complex material systems and data sets, a second reconstruction case study of carbides in a M50 bearing steel is discussed, demonstrating how simple adjustments can be


applied to the method to reconstruct larger portions of the field of view, as well as more complex alloy systems.


EXPERIMENT


A tungsten FIM sample was electropolished in a 5% NaOH solution with the application of 5–8V of AC voltage from a tungsten wire oriented along the [011] direction, in a one- step electropolishing procedure. The final specimen apex radius was estimated to be ~20 nm. The sample was subject to self-ion implantation to a dose consistent with primary stages of radiation damage, where damage cascades caused by the implantation of individual ions are not interacting.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284