SKIN PROTECTION 69 Increase in barrier strength Relative to initial condition (%) 100 p=0.2 75 * 50 ***
Placebo RADICARE -GOLD 3%
13 Darvin ME, Fluhr JW, Caspers P, et al. In vivo distribution of carotenoids in different anatomical locations of human skin: comparative assessment with two different Raman spectroscopy methods. Experimental Dermatology. 2009;18(12):1060-3.
14 Darlenski R, Fluhr JW. In vivo Raman spectroscopy in the investigation of the skin barrier. In: T. A, editor. Current problems in dermatology: Skin barrier function. 49. Basel, New York: Karger; 2016.
15 Vandersee S, Beyer M, Lademann J, Darvin ME. Blue-violet light irradiation dose dependently decreases carotenoids in human skin, which indicates the generation of free radicals. Oxid Med Cell Longev. 2015;2015:579675.
25
Mean + SEM; n=20;
0
* = p<0.05 *** = p<0.001
Figure 10: Increase in the epidermal barrier strength on the face. Skin treated with the active showed a significantly increased barrier strength compared to initial condition and outperformed placebo. Two- tailed, paired Student’s t-test.
stratum corneum. This results in damage to the skin barrier, increased corneocyte detachment and reduced hydration. At the intracellular level, these forms of radiation can either directly provoke ROS formation or influence this by exciting
photosensitisers, which transfer their energy to create ROS. Besides UV and HEV light, other radiation sources in modern technology or simply stress can increase the level of ROS by putting pressure on the respiratory chain in the mitochondrial membrane so that it leaks electrons, which are the main source of intracellular ROS production. Radicare-Gold adds valuable antioxidants in the form of β–carotene and lutein to the skin barrier and the living cells. Both molecules can eliminate ROS at an early stage by neutralising excited molecular states, both in the skin barrier and in living cells, acting synergistically. They prevent leaked electrons combining with atmospheric oxygen at the ROS formation stage, especially in the sensitive biomembranes. In this way, Radicare-Gold provides for a robust skin barrier on the outside but also on the inside, protecting the skin against ROS-induced premature skin ageing provoked by all kinds of radiation.
PC
References 1 Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:61-72.
2 Lee JB, Kim SH, Lee SC, et al. Blue light- induced oxidative stress in human corneal epithelial cells: protective effects of ethanol extracts of various medicinal plant mixtures. Invest Ophthalmol Vis Sci. 2014;55(7):4119-27.
April 2019
3 Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. International Journal Of Molecular Sciences. 2014;15(4):5366-87.
4 Lee S, Johnson D, Dunbar K, et al. 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS letters. 2005;579(21):4829-36.
5 Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2): 335- 44.
6 Hamanaka RB, Chandel NS. Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cell Logist. 2013;3(1):e25456.
7 Reilly PM, Bulkley GB. Tissue injury by free radicals and other toxic oxygen metabolites. Br J Surg. 1990;77(12):1323-4.
8 Polvani S, Tarocchi M, Galli A. PPARγ and Oxidative Stress: Con(β) Catenating NRF2 and FOXO. PPAR Research. 2011;2012.
9 Sorg O. Oxidative stress: a theoretical model or a biological reality? C R Biol. 2004;327(7): 649-62.
10 Panich U, Sittithumcharee G, Rathviboon N, Jirawatnotai S. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging. Stem Cells Int. 2016;2016:7370642.
11 Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. Discovering the link between nutrition and skin aging. Dermato- endocrinology. 2012;4(3):298-307.
12 Boussouira B, Pham DM. Squalene and Skin Barrier Function: From Molecular Target to Biomarker of Environmental Exposure. In: Wondrak GT, editor. Skin stress response pathways. Switzerland: Springer International Publishing; 2016.
16 Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiology. 2012;158 (3): 1267-78.
17 Kotikova Z, Lachman J, Hejtmankova A, Hejtmankova K. Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT - Food Science and Technology. 2011;44 (8):1703-10.
18 Liu D, Shi J, Colina Ibarra A, Kakuda Y, Jun Xue S. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical. LWT - Food Science and Technology. 2008;41(7):1344-9.
19 Palozza P, Krinsky NI. beta-Carotene and alpha-tocopherol are synergistic antioxidants. Archives Of Biochemistry And Biophysics. 1992;297(1):184-7.
20 Zanfini A, Corbini G, La Rosa C, Dreassi E. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and -tocopherol in synthetic mixtures. LWT - Food Science and Technology. 2010;37(7): 717-21.
21 Mortensen A, Skibsted LH, Willnow A, Everett SA. Re-appraisal of the tocopheroxyl radical reaction with beta-carotene: evidence for oxidation of vitamin E by the beta-carotene radical cation. Free Radic Res. 1998;28 (1): 69- 80.
22 Lledias F, Rangel P, Hansberg W. Oxidation of catalase by singlet oxygen. J Biol Chem. 1998;273(17):10630-7.
23 Hockberger PE, Skimina TA, Centonze VE, Lavin C, Chu S, Dadras S, et al. Activation of flavin-containing oxidases underlies light- induced production of H2O2 in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(11):6255-60.
24 Schweizerische Eidgenossenschaft. Faktenblatt WLAN. Eidgenössisches Department des Inneren EDI, Bundesamt für Gesundheit BAG. 2016(20. Oktober 2016).
25 Darvin ME, Sterry W, Lademann J, Vergou T. The role of carotenoids in hman skin. Molecules. 2011;16.
PERSONAL CARE EUROPE
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188