search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
52 MARINE INGREDIENTS


19th century and was known for her elongated and delicate legs.


This particular species was selected due to its high content in omega 3, long chain EPA and DHA, carotenoids and sterols, to help the body fight against the oxidative stress of PM (particulate matter) and help to restore the skin barrier function. Several in vitro and in vivo studies were


performed at the mitochondrial level to demonstrate the major role of our Natura- Tec Marine CellShield AP to neutralise the activity of harmful pollutants (Fig 2).


In vitrostudies Anti-pollution effect: protection from indoor & urban dust Evaluation of the protective effects of our Natura-Tec Marine CellShield AP (now referred to as ‘the Pavlova lutheri active’) from 0.1% to 2% of use against pollution on Normal Human Epidermal Keratinocytes (NHEK) during 48 and 72 hours. More specifically, the effects of the compounds were evaluated on the viability of NHEK intoxicated with urban (Urban dust 1649b) or indoor (Indoor dust 2584) pollutant, following a standard MTT reduction protocol. The MTT (3-[4,5- dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay is based on the conversion of MTT into formazan crystals by living cells, which determines mitochondrial activity. The total mitochondrial activity is related to the number of viable cells. The experiment is repeated 3 times. The


measurement of the cell viability is carried out by photometry.


Result: Under the experimental conditions of this study, the intoxication of the NHEK with urban dust or with indoor dust induced a strong decrease of cell viability associated with a decrease of cell growth that was clearly observed already after 48 hours of incubation. Results after 72 hours add relevance to the test, subjecting keratinocytes to


100 90 80 70 60 50 40 30 20 10 0


Recycle oils  Energy  CO2  Microalgae


minimal CO2 footprint


Waste Figure 1: The closed-circuit waste recycling system.


extreme conditions. The significance of the results obtained at 72 hours confirms the objectivity of this in vitro test.


After 48 hours and 72 hours incubation, we see that the Indoor dust has a negative impact on the cell viability: pollutants decrease cell viability respectively of 37% and 52% (Fig 3). When we use our Pavlova lutheri active, we see an immediate protective effect when tested at 0.5%, 1%, and 2% already after 48 hours of incubation.


After 48 hours and 72 hours incubation, we see that urban dust has a negative impact on cell viability: pollutants decrease cell viability respectively by 27% and 51% (Fig 4). When we use our Pavlova lutheri active, we see an immediate protective effect already with 0.2% after both 48 and 72 hours of incubation. And then from 0.5% of use, we achieve a maximum cell protection level and observe cell viability greater than in the non-intoxicated condition.


Environmental stress defence: maintains energetic metabolism  Cytosolic ATP rate measurement. The bioluminescence method is based on measurements of adenosine triphosphate (ATP) which is the principal energy carrier in all living organisms and is involved in the functioning of most of metabolic process. This experiment is performed during 13 days in dermal


100% -52% 60% 48% 62% 66% 68% 70%


120 100 80 60 40 20 0


Control 0% 0.1% No Pollutants 0.2% 0.5% 1% 2%


Natura-Tec Marine CellShield AP concentration (%) Indoor Pollutants


Figure 3: Protection against indoor dust (72H). PERSONAL CARE EUROPE Figure 2: Mitochondria.


fibroblasts (NHDF) under environmental stress conditions induced by FCCP (carbonylcyanide p-trifluoromethoxy phenylhydrazone) from 0.1% to 0.2% of use of the Pavlova lutheri active (Fig 5). Result: FCCP induced a cytosolic ATP


rate reduction of 23%, indicating that chronic exposure to FCCP alters cellular ATP synthesis. The Pavlova lutheri active induced a significant increase of cytosolic ATP rate of +8% at 0.15% of use and up to +14% at 0.2% of use. This result shows that the treatment of cells by the Pavlova lutheri active modulates the decrease of ATP induced by the FCCP. The modulating effect is dose-dependent in


 Ingredients


100% 114% 114% 114% -51% 81% 49% 97%


Control 0% 0.1% 0.2% 0.5% 1% No Pollutants


2%


Natura-Tec Marine CellShield AP concentration (%) Urban Pollutants


Figure 4: Protection against urban dust (72H). April 2019


Cell viability (%)


Cell viability (%)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188