70 SUSTAINABILITY
original plant and its very low alkane yield. Indeed, in terms of yields, it can even be considered inferior in terms of performance to petrochemicals, which have optimised their processes to the extreme. It should also be remembered that 90% of
the fossil carbon extracted is used for energy and that the remaining 10% of fossil co-products are used to produce commodities and synthetic chemical specialities. In fact, biotechnological production of
alkanes is clearly less efficient than conventional plant chemistry, as demonstrated by the LCA studies of squalane and linear alkanes, on all environmental, societal and productivity criteria. One can even question its real economic competitiveness compared to petrochemicals or even conventional plant-based chemistry. In conclusion, it has become crucial for the
cosmetics industry to scrupulously select its raw materials, not only according to the properties sought and/or their price, but above all according to their societal and environmental impact. Finally, research must now be directed
towards new bio-sourced molecules that comply with CSR criteria rather than reproducing identical petroleum-based substances when, in addition, the latter prove to be little or not biodegradable, if not ecotoxic.
References 1. TotalEnergies, GEMSEAL – emollient pour la cosmétique https://specialfluids.
totalenergies.com/fr/produits-et-services/ sciences-de-la-vie/gemseal-notre-gamme- dediee-la-cosmetique
2. Wilbur Johnson, Jr. et al. Safety Assessment of Isoparaffins as Used in Cosmetics, International Journal of Toxicology 31 (Supplement 3) 269S-295S
3. Biosynthis, Vegelight 1214 Biodegradable Volatile Oils,
http://www.artchem.eu/wp-content/ uploads/2013/11/Vegelight-scheda-tecnica.pdf
4. BASF, Cetiol Ultimate - Renewable-based, fresh, dry and volatile https://carecreations.
basf.us/files/pdf/Cetiol-Ultimate_PRES_ September2017.pdf
5. US Patent n° US 2010/0183536 (Cognis, BASF) 6. Duprat-de-Paule S. Augmented Bio-based Lipids for Cosmetics. Oilseeds and fats, Crops
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
TABLE 5: Additional analysis facts of bio-based alkanes Bio-based Alkanes
Origin Olive squalane
Dodecane/tetradecane Farnesane (Hemisqualane) « Biotech » Squalane Bio-based alkane C14
Olive Coconut
Sugar cane Sugar cane Palm kernel
and Lipids 2018, 25(5), 2018 pp 2-12
7. Neste Oil – Hydrotreated Vegetable Oil (HVO). Premium Renewable Biofuel for Diesel Engines. March 2014
8. Leading biodiesel producers in the European Union (EU-28) in 2019, by installed capacity
https://www.statista.com/statistics/983241/ biodiesel-producer-production-capacity/
9. Smith KR and Thiboutot DM. Thematic review series: Skin lipids. Sebaceous Gland Lipids: Friend or Foe? J Lipid Res 49 271-281 (2008)
10. Lejoliff JC. Histoire du Squalane, Végétal ou Pas! July, 22 2020.
www.cosmetotheque.com
11. Sabetay S. Perhydrosqualene, Revue Fran Corps Gras 3 26-30 (1956)
PC
12. Les huiles volatiles 2 : volonté ou opportunité?, La Cosmétothèque https://
cosmetotheque.com/2021/08/06/les-huiles- volatiles-2-volonte-ou-opportunite/
13. Anastas PT, Warner, JC. Green Chemistry: Theory and Practice. Oxford University Press, New York, 1998.
14. Mathis, L. Plant-Based Cosmetics Ingredients to Replace Hydrocarbons & Silicones.
https://www.tresor.economie.
gouv.fr/Articles/4be02113-5cfa-406a-b363- a0a2acf1beac/files/6d49eaef-2156-4a2f- 9329-51e238aa1b92
15. Marlière, P, Allard P. Bioproduction Fermentaire de l’Isobutène. L’Actualité Chimique, février 2017, n° 415, pp 44-49
16. WO 2010/001078 (Global Bioenergies) 17. WO 2009/042070 et WO 2011/146837 (Amyris) 18. Yu VY, Chang MCY. High-yield chemical synthesis by reprogramming central metabolism. Nature Biotechnology volume 34 number 11 November 2016, 1129 19. EP 2 574 187 (Amyris)
Coconut Alkanes ■ Palm Kernel Alkanes■
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Process
Conventional chemistry Conventional chemistry
Synthetic biology + Synthetic chemistry Synthetic biology + Synthetic chemistry Conventional chemistry
Valorization of co-products
Yes Yes No No Yes
20. Piccirilli A, Bernoud T, Magne J, A New Opportunity for Squalane Alternatives. Personal Care Europe, pp 161-166, 2017
21. General guide for Life Cycle Assessment - Provisions and Action Steps, International Reference Life Cycle Data System (ILCD) Handbook, 2011
22. ISO 14040, Management environnemental — Analyse du cycle de vie — Principes et cadre, 2006
23. The development of the PEF and OEF methods, European Commission https://
ec.europa.eu/environment/eussd/smgp/ dev_methods.htm
24. Enviro-Stratégies, Eco-Profil de deux matières premières cosmétiques issues de la chimie verte, 2015-2016
25. Confidentiel, Analyse de Cycle de Vie comparative de productions d’alcanes biosourcés, 2021
26. Jungbluth, N et al. Life Cycle Inventories of Bioenergy, ecoinvent report No. 17, Swiss Centre for Life Cycle Inventories, p.387, 2007
27. Rocha CA, Pedregosa AM, Laborda F. Biosurfactant-mediated Biodegradation of Straight and Methyl-branched Alkanes by Pseudomonas Aeruginosa ATCC 55925. AMB Express 2011, 1:9,
http://www.amb-express. com/content/1/1/9
28. Filoso S, Carmo JB, Mardegan SF, Machado Lins SR, Gomes TF, Martinelli LA. Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renewable and Sustainable Energy Reviews, 52 (2015), 1847–1856
29. Pearshouse R. The Failing Response to Pesticide Drift in Brazil’s Rural Communities, Human Rights Watch, 2018
Olive Squalane ■ ‘Biotech’ Squalane ■
Figure 7: Comparison of the LCA of coconut alkanes and palm kernel alkanes PERSONAL CARE April 2022
Figure 8: Comparison of the LCA of olive and biotechnological squalanes
www.personalcaremagazine.com
Climate change minerals and metals Resource use, Acidification
Eutrophication freshwater
Ozone depletion
Photochemical ozone formation
Ecotoxicity, freshwater
Water use
Resource use, fossils
Climate change minerals and metals Resource use, Acidification
Eutrophication freshwater
Ozone depletion
Photochemical ozone formation
Ecotoxicity, freshwater
Water use
Resource use, fossils
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116