search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EMS MATERIALS SCIENCE & METROLOGY CATALOG 2019–20 EDITION EQUIPMENT & ACCESSORIES  EMS 1050 Plasma Asher


The EMS 1050 consists of a solid state RF Generator and associated tuning circuits, a vacuum system with a solenoid controlled valve, a constant feed gas supply system, and a reaction chamber system which includes two semicircular electrodes and two piece pyrex chamber. The unit has one gas control as standard.


The solid state RF Generator is a solid state crystal controlled oscillator designed to provide up to 150 watts of continuous wave 13.56 MHz power to the reaction chamber. Maximum power transfer from the power supply to the reaction chamber is accomplished by matching the output impedance of the amplifier to the input impedance of the reaction chamber.


The gas supply system consists of the gas delivery system inside the reaction chamber. This delivery system is a glass tube sealed on the inner end and perforated along its bottom surface. Connections to the delivery tube are fastened with special clips to prevent the possible leakage of contaminants into the chamber.


The EMS 1050 is often used in Asbestos Specimen Preparation as a Low Temperature Ashing Technique.


FEATURES


 Automatic tuning of RF power.  Built-in rotary vacuum pump.


 Barrel chamber with isotropic etching.


 Low temperature plasma ashing, etching, and cleaning. (0-150 watts RF)


 Vacuum monitoring.  Dual flow gauge gas control.  Accurate process timer.  Needle valve vent control.


 Micro controller, with default settings programmable by the operator.


 Indication of settings by LCD display of status/entry.


 Indication of conditions during cycle, vacu- um, power, time.


 Location bay for backing pump filled with special “oil”.


 Sample carrier for convenient loading.


 Rack-out drawer loading door for ease of sample access.


 Polycarbonate safety shield. Application Example Low temperature plasma ashing of coal...


The EMS1050 can be used to remove the organic content from coal, leaving a residue of mineral and volatile components for subsequent analysis. The advantage of low temperature RF plasma ashing over other methods, such as heating in a muffle furnace (typically at 700°C), is that many more of the volatile components are retained.


In the following experiment oxygen gas was used with a forward power setting of 100W.


196


A thermocouple was introduced into the chamber via a vacuum feed through in the rear of the EMS1050 process chamber. The thermocouple was fixed with high temperature resistant tape to the base of a glass Petri dish and covered with approximately 5g of coal granules of approximately 1-2mm3


in size, covering the thermocouple tip to a depth of 1.5mm.


After one hour it was apparent that the temperature had reached a maximum 150°C.


Product Description


Built to withstand heavy use - 24 hours a day for some plasma ashing schedules - the EMS 1050 features microprocessor control with automatic operation and offers durability and simplicity of operation. Barrel systems plasma etch or plasma ash isotropically (in all directions) and are suitable for the majority of applications.


The EMS 1050 uses a low pressure, RF-induced gaseous discharge to modify specimen surfaces or remove specimen material in a gentle, controlled way. A significant advantage over alternative methods is that the plasma etching and ashing processes are dry (no wet chemicals needed) and take place at relatively low temperatures.


A wide range of surface modification methods are available, using a variety of process gases. Using oxygen (or air) as the process gas, the molecules disassociate into chemically-active atoms and molecules and the resulting ‘combustion’ products are conveniently carried away in the gas stream by the vacuum system.


Chamber, specimen handling and gas control The EMS 1050 has a 110mm diameter x 160mm borosilicate glass chamber horizontally mounted with a slide-out specimen drawer and viewing window. Evacuation of the chamber is achieved by an optional 50L/m mechanical rotary vacuum pump. Ingress of reactive gases is controlled by two built-in flow-meters backed by solenoid valves.


NB: For applications where borosilicate glass needs to be avoided, the EMS 1050 can be fitted with a quartz chamber.


“Rack Out” Specimen Stage


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217