search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EMS MATERIALS SCIENCE & METROLOGY CATALOG 2019–20 EDITION EQUIPMENT & ACCESSORIES Why cool?


Low vacuum (LV) or variable pressure (VP) modes are now standard on most scanning electron microscopes (SEMs). For this reason it has become important to control water evaporation from wet specimens. Cooling such specimens reduces the loss of water by evaporation, or - depending on chamber pressure - can prevent it altogether.


Saturated vapour pressure of water decreases considerably with temperature. At room temperature, water will very quickly evaporate - causing considerable damage to specimen composition and ultra-structure. This is due to high forces of surface tension at the drying front as it passing though the specimen. In most biological systems this will result in distortion and collapse of membranes and other structures.


At 300Pa, the specimen temperature needs to be less than -9.5°C, and at 85Pa less than -25°C to stop water evaporation. Therefore, by cooling a specimen to -25°C, chamber pressures up to 85Pa can be used with little or no water loss by evaporation. In this way, changes in specimen structure can be minimised. In addition, being able to operate at higher vacuum gives a better signal-to- noise ratio and clearer images.


 The EMS Coolstage for SEM, LV or VP Overview


The Coolstage is a Peltier-driven SEM cooling stage for scanning electron microscopy (SEM), low vacuum (LV) or variable pressure (VP) applications. The stage can be cooled to sub- zero temperatures for specimens that may be sensitive at ambient temperature, subject to beam damage, or may otherwise 'sublime' (lose water) at ambient temperatures.


There are three versions of coolstage - Standard, Enhanced and Ultra - to cover differing specimen requirements.


Features - Standard Coolstage


 Temperature range -30°C to +50°C at 300Pa


 Self contained cooling - no additional external cooling water needed


 Temperature accuracy +/- 1.5°C or 2% - whichever is greater


 Minimal image drift


 Cooling and heating rates of up to 30°C per minute


 Keypad control - with simultaneous display of actual and target temperature


 Supplied with SEM chamber port feed- though - specify when ordering


 One-year warranty Ultra Coolstage. Range: -50ºC to +50ºC at 300Pa


Features - Enhanced Coolstage  Temperature range -30°C to +160°C at 300Pa  All other specifications as per Standard Coolstage


Features - Ultra Coolstage


 Temperature range -50°C to +50°C at 300Pa  All other specifications as per Standard Coolstage Product Description


The Coolstage is a temperature-controlled specimen stage that can be fitted to any low vacuum (LV) or variable pressure (VP) scanning electron microscope (SEM).


The Standard Coolstage consists of a single stage Peltier device, onto which a thermally isolated specimen holder and dual temperature sensor is mounted. The Coolstage assembly is mounted onto the SEM stage using an adaptor plate specific to the microscope. Cooling pipes and electrical wires connect to the SEM


feedthrough flange. External components are a recirculating water chiller and power supply case, and a compact keypad for digital temperature readout and control.


Compact, efficient cooling and temperature control


The temperature range of the Standard Coolstage is -30°C to +50°C at 300Pa. The specimen holder is water-cooled using a small, self-contained closed loop recirculating chiller that is normally positioned approx 2m from the SEM. A microprocessor controls and monitors the temperature of the cold stage. A small keypad is used to set the required temperature and display target and current temperatures.


The specimen holder has been designed to minimise image drift due to temperature change, giving a stable image at high magnification. An integrated RS-232 interface allows temperature to be set and read from the SEM.


164 Standard Coolstage. Range: -30°C to +50°C at 300Pa


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217