search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
96 FORMULATING FOR MILDNESS


Conclusion The growing awareness of environmental aspects increases the focus on the raw materials used in cosmetic products. More and more, ingredients are preferred that are made from natural substances. For surfactants this applies to the hydrophobic and the hydrophilic part. The amino acid surfactants shown in Figures 1 and 2a are an ideal choice as their components - fatty acids and amino acids - are part of nature. The linkage between them is also ‘natural’. Therefore, amino acid surfactants are excellent biodegradable. They are proven to be mild with good foaming properties. For natural cosmetics, cocoyl glutamate is of special interest as it is completely based on renewable raw materials. For some customers in particular propylene glycol- free cocoyl glutamate solutions are ideal candidates for natural cosmetic applications.


The N-acyl derivatives of glutamate,


sarcosine and glycine are the most popular amino acid surfactants in Europe. Zschimmer & Schwarz offers surfactants based on these amino acids for all needs of customers. The latest developments are the propylene glycol-free Protelan AG 37 (INCI: Disodium Cocoyl Glutamate, Sodium Cocoyl Glutamate) and Protelan GC-D (INCI: Sodium Cocoyl Glycinate). Both have a very low content of salt and free amino acids (in sum: below 0.2%). AG 37 is approvable for natural cosmetic labels. All Zschimmer & Schwarz products mentioned in this article are preservative-free and also available in RSPO-MB quality.


The usage of amino acid surfactants in combination with other suitable surfactants is a highly attractive way to create viscous cosmetic products without using thickeners: Lowering the pH-value starting from about 7 causes a steady protonation of the anionic carboxylate group(s) of amino acid surfactants. As a result of the neutral carboxylic function the micelle architecture changes completely. By this, viscous aqueous surfactant solutions can be created. This is the case in the particularly attractive pH-range at around 5-6. Besides this, cocoyl glutamates can additionally serve as viscosity reducer and are excellent emulsifiers for cold-processable oil-in-water emulsions. “We still do not know one thousandth of


one percent of what nature has revealed to us” (Albert Einstein). Extrapolated to amino acid surfactants this means: probably there are even more attractive possibilities for them in cosmetic applications which we do not know today.


PC


References 1 Hentrich W, Keppler H, Hintzmann K. Amides,


US Patent 2047069 (1936) 2 Wagner AT, Krohn T. Syndet Cleansing Bars: PERSONAL CARE EUROPE


Table 2: Very mild and creamy foaming Body Shampoo Ingredients


INCI PROTELAN GG AMPHOTENSID B 5


Sodium Cocoyl Glycinate, Disodium Cocoyl Glutamate Cocamidopropyl Betaine


Sodium Lauryl Sulfoacetate Sodium Lauryl Sulfoacetate Polyquaternium-47 (20%) Perfume Water


Polyquaternium-47 Parfum (Fragrance) Aqua (Water)


Procedure:


1. Stir to homogeneity until the solution is clear. 2. Adjust the pH value with citric acid to 6.0.


Table 3: Shower Gel for natural cosmetics Phase Ingredients A Water


B Xanthan Gum


C ZUTELAN GL 810 ZUTELAN GL 124 Perfume


D PROTELAN AG 37


Sodium Cocoyl Hydrolyzed Wheat Protein


Sodium PCA Glycerin


Lactic acid (80 %) Sodium Benzoate Potassium Sorbate


Procedure:


1. Add B to A and stir to a homogeneous gel. 2. Combine C and stir until it is clear and homogenous.


3. Add all components of D to C in the indicated sequence and stir to homogeneity. 4. Combine AB and CD and stir to homogeneity. 5. Control the pH value and adjust if necessary to 5.3 - 5.5 (original).


The better “Soaps”?, Personal Care Magazine 2019; 13(3): 111 – 114


3 Wagner AT. Sulfate-free Surfactants: What about Sulfonates?, Personal Care Magazine 2018; 12(2): 61 – 65


4 Raykundaliya N, Bordes R, Holmberg K, Wu J, Somasundaran P, Shah DO. The effect on solution properties of replacing a hydrogen atom with a methyl group in a surfactant. Tenside Surfactants Detergents 2015; 52(5): 369 – 374.


5 Jungermann E, Gerecht JF, and Krems IJ, The preparation of Long Chain N-Acylamino Acids. J. Am. Chem. Soc. 1956; 78:172 – 174.


6 Bordes R, Tropsch J, Holmberg K. Role of an amide bond for self-assembly of surfactants. Langmuir 2010, 26 (5): 3077 – 3083.


7 Kaneko A, Sehgal P, Doe H. Interfacial and aggregation properties of aqueous N- dodecanoyl sarcosinate solution at different pH, Colloid Polymer Sci 2012, 290: 323 – 330


8 Preisig N, Schad T, Jacomine L, Bordes R, Stubenrauch C. How promoting and breaking intersurfactant H-bonds impact foam stability, Langmuir 2019, 35: 1499 – 15008


9 Stubenrauch C, Hamann M, Preisig N, Chauhan V, Bordes R. On how hydrogen bonds affect


foam stability, Advances in Colloid and Interface Science 2017, 247: 435 – 443


10 Regan J, Mollica LM, Ananthapadmanabhan KP. A novel glycinate-based body wash, J. Clin. Aesthet Dermatol 2013, 6(6): 23 – 30


11 Zhang Y, Romsted LS, Zhuang L, de Jong S. Simultaneous Determination of Interfacial Molarities of Amide Bonds, Carboxylate Groups, and Water by Chemical Trapping Micelles of Amphiphiles Containing Peptide Bond Models, Langmuir 2013; 29: 534−544


12 Rosen MJ, Zhu BY. Synergism in binary mixtures of surfactants, Journal of Colloid and Interface Science 1984; 99(2): 427 – 434


13 Li Y, Holmberg K, Bordes R. Micellization of true amphoteric surfactants, Journal of Colloid and Interface Science 2013; 411: 47 – 52


14 Wagner AT. Lecture: New hydrotropic surfactants. CESIO World Surfactant Conference 2019.


15 Wagner AT, Bach A, Wehler S. New multifunctional hydrotropic surfactants, SOFW Journal 2016, 142(10): 4 – 8


16 Wagner AT. Powerful surfactants from renewable raw materials, Personal Care Magazine 2016; 9(2): 34 – 36


April 2020 INCI


Aqua (Water) Xanthan Gum


Caprylyl/Capryl Glucoside Lauryl Glucoside Parfum (Fragrance)


Disodium Cocoyl Glutamate / Sodium Cocoyl Glutamate


Sodium Cocoyl Hydrolyzed Wheat Protein Sodium PCA


Glycerin Lactic Acid


Sodium Benzoate Potassium Sorbate


w/w% 50.5


0.5


15.0 5.0 0.4


20.0


1.25 1.2


4.2 1.5 0.3


0.15


w/w% 20.0


15.0 3.0 1.0 0.5


60.5


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196