search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
640


JOHN A. FRONIMOS ET AL.


concave element. Grammont (1979) was inspired to invent this procedure by the evolutionary transition of human ancestors from quadrupedalism to bipedalism. As described by Baulot et al. (2011: p. 2426), “the freeing of the human upper limb resulted in a functional reversal of the roles of the humerus and the glenoid.” In humans, the hand is not involved in weight support and represents the free end of the forelimb under most conditions. The results of the present analysis suggest that a reverse shoulder joint should be capable of greater rotational stability than the normal anatomical orientation in humans. Conversely, it is expected that a comparable reversal applied to the human femoro-acetabular joint, if such a prosthesis existed, would have a destabilizing influence.


Conclusions The functional significance of concavo-convex


joint polarity has been a source of lingering uncertainty, including with regard to opistho- coelous and procoelous vertebrae. Physical modeling of concavo-convex joints reveals that proximally concave joints are significantly more resistant to joint failure. The strongly conserved pattern of cervical opisthocoely and caudal procoely in sauropod dinosaurs is, therefore, best explained as providing greater passive stabilization of the intervertebral joints than the opposite polarity. The sauropod configuration also would have permitted greater mobility, mechanical advantage of the supporting ligaments and muscles, and distal loading (i.e., a longer neck or tail) without sacrificing stability. The universal condition of cervical opisthocoely in sauropods may have been necessary for the evolution of large body size and neck hyperelongation. Among vertebrates, exceptions to the sauropod-type patternmay be dependent on limited mobility, short neckswith large, heavy heads, or energetically costly muscular activity for stabilization. Cervical procoely and caudal opisthocoely could be advantageous if the loading direction of the intervertebral joints was reversed, as during the adoption of a tripodal stance or, perhaps, during particular forms of locomotion. Further research into the loading regimes of intervertebral joints during these behaviors is needed. The concept


that concavo-convex joint polarity reflects particular loading regimes provides an explana- tion for some patterns of polarity in the appendicular skeleton, as in the case of the tetrapod glenohumeral and femoro-acetabular joints, and may offer new insights into the functional evolution of these joints.


Acknowledgments We wish to thank S. O’Grady and


S. O’Malley of the University of Michigan 3D Lab for their help with the design and printing of the models used in this study. W. Sanders provided advice and assistance with material selection and molding and casting. M. Cherney and T. Hudgins aided greatly in the design and construction of the experimental testing rigs. A. Rountrey provided access to equipment and space for conducting experiments. We are grateful to C. Abraczinskas for guidance on the execution of the figures. Access to the sauropod specimens pictured in Figure 1 was provided by D. Campos, R. Machado, and I. Yamamoto (Museu de Ciências da Terra). The color scheme in Figure 7 was developed using ColorBrewer, Version 2.0. We thank the University of Michigan Library’s Buhr Remote Shelving Facility staff for providing high-quality scans of Fick (1890); nineteenth- century literature was also provided by the HathiTrust Digital Library and the Biodiver- sity Heritage Library. Vielen Dank to J. Fahlke for input on German translations; the transla- tion of Janensch (1950) was provided through the Polyglot Paleontologist website (http:// www.paleoglot.org) courtesy of G. Maier. We thank editor C. Jaramillo and two anonymous reviewers for their helpful feedback on this manuscript. This study represents part of the dissertation of J.A.F., and the authors thank committee members D. Fisher, P. Gingerich, and L. MacLatchy for their input throughout. This project benefited from discussions with University of Michigan Museum of Paleontology graduate students M. Cherney, J. El Adli, L. Joel, K. Loughney, E. Moacdieh, K. Purens, T. Smiley, V. Syverson, and M. Veitch, and many others in the Department of Earth and Environmental Sciences. Funding was provided by the University of Michigan


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192