search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
ON A CONSERVATIVE BAYESIAN METHOD OF INFERRING EXTINCTION


As mentioned, it is technically possible to compute agnostic probabilities even if there is a single sighting. Because this would be nonsense, the two-sighting cutoff is used in all the simulations reported here. By contrast, Alroy (2014) excluded species with less than three sightings, because CSD probabilities are otherwise not computable. Based on the count of species with posterior


extinction probabilities ε>0.50 (black line in Fig. 2), the agnostic estimates are accurate but usually very slightly downward biased relative to the true count (gray lines in Fig. 2). However, the gap seems unimportant, with the true tallies and ε>0.50 tallies being off by


675


about 2–6% throughout most of the time series (starting from around interval 20) when one assumes that extinction probabilities are expo- nentially distributed (Fig. 2B). Furthermore, CSD’s performance is arguably worse (see Alroy 2014: Fig. 2B). The truly striking differ- ence is that CSD very often infers ε>0.95 or even 0.99, whereas the 0.50, 0.95, and 0.99 ε lines are widely spaced in the current simulation (Fig. 2A,B). In other words, the new method is very conservative in the narrow sense of tending not to infer extinction strongly (meaning it produces few false positives) but no more or less conservative with respect to inferring survival (because the


FIGURE 2. Performance of the agnostic equation based on a simulation analysis involving a cohort of 1000 species. The per-interval extinction probability E is 0.05 and the per-interval sampling probability ps is 0.5. The dotted line indicates the number of species that have been sampled at least twice up to this point and therefore have computable extinction probabilities; gray line, number of those that are actually extinct; thick black line labeled 50, number with posterior extinction probabilities >0.5; thin lines, number with probabilities at other cutoffs (as labeled). Compare with Figure 2B in Alroy (2014). A, Results obtained by assuming a uniform distribution of extinction probabilities. B, Results obtaining by assuming an exponential distribution of extinction probabilities. C, First differences of the data shown in (A), that is, interval-by-interval rates of actual and inferred extinction. To improve visibility, the black line is based on summed posteriors instead of counts of posteriors >0.5. D, First differences of the data shown in (B). Black line is based on summed posteriors.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192