search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EDIACARAN DISTRIBUTIONS IN SPACE AND TIME


TABLE 1. List of Ediacaran locality codes used in NMDS analyses.


Code Nil


Nam Region


Nilpena, South Australia Namibia, Southern Africa


Mog_PUK Podolia, Ukraine WS ZG


Sol KR


Suz


Ong LR


Kh_khat Loc


MatoGDS Lubcl Brad NQ DP


Nain Muss Ferry Shin LMP


D_sur E_sur G_sur BC PC DC BV SB


GrH Car_SB


SB_Nor1/ SB_Nor2


Blu SecA


Dea_V3 Mont Jiang


Lijian Gaoj


Muz2Sh Miah1


Omn Sali1


Fitz Ural Mountains, Russia


Winter Coast, Arkhangelsk Region, Russia


Solza River, Arkhangelsk Region, Russia


Karakhta River, Arkhangelsk Region, Russia


Suzma River, Arkhangelsk Region, Russia


Onega River, Arkhangelsk Region, Russia


Lyamsta River, Arkhangelsk Region, Russia


Olenek Uplift, Siberia Rio Apa Block, Paraguay Mato Grosso do Sul, Brazil Lubcloud Assemblage, U.K. Bradgate Park, U.K. North Quarry, U.K. Finnmark, Norway


Nainital Syncline, Krol Belt, India Mussoorie Syncline, Krol Belt, India Ferryland, Newfoundland Shingle Head, Newfoundland


Lower Mistaken Point, Newfoundland D Surface, Newfoundland E Surface, Newfoundland G Surface, Newfoundland Bristy Cove, Newfoundland Pigeon Cove, Newfoundland Daley’s Cove, Newfoundland


Bonavista Penninsula, Newfoundland Spaniard’s Bay, Newfoundland Green Head, Newfoundland Carolina Slate Belt, U.S.A.


Bluefish Creek,NWCanada Wernecke Mountains, Yukon Death Valley Region, U.S.A. Montgomery Mountains, U.S.A.


Blueflower/June Beds, Sekwi Brook, NWCanada


577


Jiangkou County, Guizhou Province, China


Lijiangou, Shaanxi Province, China Gaojishan, Shaanxi Province, China Yangtze Gorges, Hubei Province, China


Miaohe, Yangtze Gorges, Hubei Province, China


Huqf Supergroup, Oman


Salient Mountain, Rocky Mountains, Canada


Mt. Fitzwilliam, Rocky Mountains, Canada


Data Analysis We used nonmetric multidimensional


scaling (NMDS) to ordinate the 86 Ediacaran localities in multidimensional space based on


taxonomic similarity (Jaccard distance).NMDS was chosen over other computational techniques that rely on a Euclidean (linear) relationship between variables and taxonomic composition (such as principal components analysis) as it: (1) uses rank orders, which can accommodate a variety of nonnumerical data types (e.g., presence/absence of taxa and qualitative geological properties used in this study), and (2) is widely accepted as a stan- dard statistical metric within contemporary ecological and community analysis studies (Clapham 2011, and references therein).NMDS collapses multidimensional ranked data into two-dimensional scatter plots (axes NMDS1 and NMDS2), which allows for visualization and interpretation of trends within large data sets. The calculated stress for this original taxonomic ordination was low (0.071), indicat- ing that the resulting biplot provides an excellent representation of rank orders in reduced dimensions (Clarke 1993). Once a taxonomic ordination using NMDS was generated, we then overlaid convex hulls (polygons) representing sites corresponding to the original three assemblages identified by Waggoner (1999, 2003). We then created a second set of polygons linking sites with similar temporal (i.e., time bin), paleoenviron- mental (depositional environment and water depth), and lithological characteristics. The degree to which these polygons overlap provides a visual indication of the extent to which the Waggoner assemblages are controlled by time, paleoenvironment, and lithology. We evaluated the statistical validity of these polygons using two methods. First, function “ordiellipse” draws 95% confidence intervals (CIs) around class centroids as ellipses. If the ellipses do not overlap, they are outside of the assigned level of confidence, and the polygons are therefore considered significantly different (Supplementary Table S.4). Second, we quantified the dissimilarity between polygons in partitioned (i.e., “assem- blage,”“lithology,”“time,” etc.) data sets using three beta-diversity metrics: (1) mean Jaccard dissimilarity of all pairwise compar- isons between categories, (2) multisite Soren- son’s dissimilarity, and (3) multisite Simpson’s dissimilarity metric using package betapart


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192