search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
NONLANDMARK CLASSIFICATION IN PALEOBIOLOGY Traditional landmark analysis has advan-


tages in two areas over CP-analysis. First, type 1 landmarks, as used in the Atwood et al. (2012) study, are points that have anatomical homology between specimens. Whereas calculated geometric “feature points” may change position between species, the type 1 landmarks represent identical points, allow- ing for different types of questions to be addressed; however, as mentioned above, landmarks could be used as the feature points for CP distance in a future study. Second, landmarks used for the Atwood


et al. (2012) study require preservation of only the A ambulacrum and adjacent interambula- cra for any given specimen. Specimens could be analyzed with confidence even if other portions of the theca were missing or covered with matrix. The CP-distance method, as presently used, requires complete preservation of thecal surfaces preserved three dimension- ally and without significant adhering matrix. Our forthcoming work will address both of these issues.


Conclusion


We compare a novel computational- geometry methodology based on continuous Procrustes distance with the standard method of discrete Procrustes distance for tackling the problem of species discrimination on Pentremites. Our results show that the CP- distance methodology is not only (slightly) superior at resolving the issue but also sig- nificantly reduces processing time and vulner- ability to human error. Specifically, advantages appear in the separa-


tion of P. tulipiformis species from the cluster containing the P. fredericki and P. spicatus species. In contrast, Atwood and Sumrall (2012) clusters afew P. fredericki as P. tulipiformis,and the respective clusters are visually mixed. We attribute this advantage to the CP-distance calculation taking into consideration curvature measurements,which reflect the concavity of the specimens’ plates. This differs significantly from the output that can be obtained using DP distance alone; in that methodology, concavity is measured only as a subtle change in the position of a couple of landmarks.


705


This phenomenon is vastly amplified when large regions of the sample are concave and eventually adds up to a large difference in the resulting CP distance. As a consequence, we are effectively able to separate species that are concave from those that are not. In addition, we determined the sensitivity of


the CP-distance methodology to varying resolutions of scans. We found a threshold of approximately 1000 points per scan, under which the reliability of the method begins to wither. Nevertheless, we showed that even at the lowest resolution levels there is informa- tion to be gained. Because of the relatively low cost and short time involved in performing low-resolution scans, our technique opens the door for future researchers in the area to produce several low-cost, preliminary studies; this would allow them to choose where to invest their in-depth efforts more effectively.


Acknowledgments The authors would like to thank two anony-


mous reviewers for their comments, which substantially improved the manuscript. Special thanks to J. A. Waters at the Appalachian State University for very helpful conversations and B. Allen at the University of Tennessee, Knoxville, for suggestions and discussions.


References


Atwood, J. W., and C. D. Sumrall. 2012. Morphometric investiga- tion of the Pentremites fauna from the Glen Dean Formation, Kentucky. Journal of Paleontology 86:813–828.


Bookstein, F. L., P. Gunz, P.Mitteroecker,H. Prossinger,K. Schaefer, and H. Seidler. 2003. Cranial integration in Homo:singularwarps analysis of the midsagittal plane in ontogeny and evolution. Journal ofHuman Evolution 44:167–187.


Budd, A. F., K. G. Johnson, and D. C. Potts. 1994. Recognizing morphospecies in colonial reef corals, I. Landmark-based methods. Paleobiology 20:484–505.


Cox, T. F., and M. A. A. Cox. 2001. Multidimensional scaling. Chapman and Hall, Boca Raton, Fla.


Ferreira, L., and D. B. Hitchcock. 2009.Acomparison of hierarchical methods for clustering functional data. Communications in Statistics Simulation and Computation 38:1925–1949.


Foote, M. 1991. Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101–140.


Frost, S. R., L. F. Marcus, F. L. Bookstein, D. P. Reddy, and E. Delson. 2003. Cranial allometry, phylogeography, and systema- tics of large-bodied papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. Anatomical Record Part A 275:1048–1072.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192