search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
608


CAITLIN R. KEATING-BITONTI AND JONATHAN L. PAYNE


while enhancing oxygen diffusion rates (Bernhard 1986). Contrary to expectations, our data indicate that changes in calcite saturation state and POC flux are unlikely to have important direct effects on the composition of foraminiferal communities, as the coefficients associated with these environ- mental parameters are relatively small compared with the coefficients associatedwith temperature and dissolved oxygen (Fig. 3).


Summary


physicochemical conditions exert an identifiable influence on the sizes and volume–to–surface area ratios of benthic foraminifera. Test volume and volume–to–surface area ratio of Rotallid foraminifers are inversely correlated with ambient water temperature across broad geographic scales and among species, consistent with a direct metabolic influence on cell size. These morphological parameters correlate positively with oxygen availability, which exerts a stronger control at lower oxygen concentrations typical of upwelling zones in the eastern Pacific, generally below 3 ml/liter. In contrast, the calcite saturation state of seawater and POC flux to the seafloor do not exert statistically identifiable controls on size and volume–to–surface area ratio beyond their correlations with temperature and oxygen. These findings highlight the role of energy metabolism in the biogeographic distribution of protistan species. To the extent that space can be substituted for time, they also suggest that high temperatures were at least as important as lower oxygen availability in driving test reductions during episodes of global warming and oxygen depletion in Earth’spast. They further suggest that warming waters and expansion of hypoxic zones during the coming millennium are more likely to impact benthic foraminiferal communities than declines in calcite saturation or changes in primary productivity.


Across the North American continental shelf, Acknowledgments


We thank S. J. Culver and M. A. Buzas for sharing their biogeographic benthic


foraminifera data set; D. T. Medeiros for ArcGIS assistance; C. R. McClain for providing POC flux data; R. M. Key and L. G. Anderson for assistance finding ALK and DIC data in the Caribbean and Arctic, respectively; N. A. Heim for helpful discussion and R assistance; E. A. Sperling for helpful comments on an early draft of the manuscript; and a number of summer high school student interns for data collection. C.R.K.-B. was supported by a National Science Foundation Graduate Research Fellowship. J.L.P. was supported by a CAREER grant from the U.S. National Science Foundation (EAR-1151022).


Literature Cited


ABBYY. 2011. ABBYY® FineReader, Version 11. Alegret, L., S.Ortiz, I. Arenillas, and E. Molina. 2010. What happens when the ocean is overheated? The foraminiferal response across the Paleocene–Eocene thermal maximum at the Alamedilla section (Spain). Geological Society of America Bulletin 122: 1616–1624.


Antonov, J. I.,D. Seidov,T. P.Boyer,R.A.Locarnini,A.V.Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson. 2010. World ocean atlas 2009, Vol. 2. Salinity In S. Levitus, ed. NOAA atlas NESDIS 69. Government Printing Office, Washington, D.C.


Armstrong, H. A., and M. D. Brasier. 2005. Microfossils. Blackwell, Malden,Mass.


Ashton, K. G., M. C. Tracy, and A. de Queiroz. 2000. Is Bergmann’s rule valid for mammals? American Naturalist 156:390–415.


Bernhard, J. M. 1986. Characteristic assemblages andmorphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene. Journal of Foraminiferal Research 16:207–215.


Bernhard, J. M., K. R. Buck, M. A. Farmer, and S. S. Bowser. 2000. The Santa Barbara Basin is a symbiosis oasis. Nature 403:77–80.


Bernhard, J. M., K. R. Buck, and J. P. Barry. 2001. Monterey Bay cold-seep biota: assemblages, abundance, and ultrastructure of living foraminifera. Deep-Sea Research I 48:2233–2249.


Bernhard, J. M., K. L. Casciotti, M. R. McIlvin, D. J. Beaudoin, P. T. Visscher, and V. P. Edgcomb. 2012. Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. Journal of Geophysical Research 117:G03002.


Bijma, J., H. Pörtner, C. Yesson, and A. D. Rogers 2013. Climate change and the oceans—what will the future hold? Marine Pollution Bulletin 74:495–505.


Blackmon, P. D., and R. Todd. 1959. Mineralogy of some foraminifera as related to their classification and ecology. Journal of Paleontology 33:1–15.


Boltovskoy, E. 1988. Size change in the phylogeny of Foraminifera. Lethaia 21:375–382.


Bopp, L., L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Seferian, and J. Tjiputra. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245.


Broecker, W. S., and T. H. Peng. 1982. Tracers in the sea. Lamont-Doherty Geological Observatory, Palisades, N.Y.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192