search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Paleobiology, 42(4), 2016, pp. 696–706 DOI: 10.1017/pab.2016.19


Nonlandmark classification in paleobiology: computational geometry as a tool for species discrimination


Joshua Mike, Colin D. Sumrall, Vasileios Maroulas, and Fernando Schwartz


Abstract.—One important and sometimes contentious challenge in paleobiology is discriminating between species, which is increasingly accomplished by comparing specimen shape. While lengths and proportions are needed to achieve this task, finer geometric information, such as concavity, convexity, and curvature, plays a crucial role in the undertaking. Nonetheless, standard morphometric methodologies such as landmark analysis are not able to capture in a quantitative way these features and other important fine-scale geometric notions. Here we develop and implement state-of-the-art techniques from the emerging field of computa-


tional geometry to tackle this problem with the Mississippian blastoid Pentremites.We adapt a previously known computational framework to produce a measure of dissimilarity between shapes. More precisely, we compute “distances” between pairs of 3D surface scans of specimens by comparing a mix of global and fine-scale geometric measurements. This process uses the 3D scan of a specimen as a whole piece of data incorporating complete geometric information about the shape; as a result, scans used must accurately reflect the geometry of whole, undamaged, undeformed specimens. Using this information we are able to represent these data in clusters and ultimately reproduce and refine results obtained in previous work on species discrimination. Our methodology is landmark free, and therefore faster and less prone to human error than previous landmark-based methodologies.


Joshua Mike, Vasileios Maroulas, and Fernando Schwartz. Department ofMathematics, University of Tennessee, Knoxville, Tennessee 37996, U.S.A. E-mail: mike@math.utk.edu, maroulas@math.utk.edu, Fernando@math.utk.edu


Colin D. Sumrall. Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, U.S.A. E-mail: csumrall@utk.edu


Accepted: 25 March 2016 Published online: 18 May 2016 Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.cg7b7


Introduction Shape has often been used along with


discrete morphologies to investigatemany ques- tions in biology and paleobiology, including species discrimination (Budd et al. 1994; Villemant et al. 2007; Maderbacher et al. 2008; Atwood and Sumrall 2012), ontogeny (Rohlf, 1998; Bookstein et al. 2003; Sheets et al. 2004) ecophenotypic variation (Reyment et al. 1988; Wilk and Bieler 2009; Piras et al. 2010), evolution via heterochrony (Mitteroecker et al. 2004, 2005; Lieberman et al. 2007), functional morphology (Zollikofer and Ponce De Léon 2004), phylogeo- graphy (Frost et al. 2003), and many others (Zelditch et al. 2012). Recent advances involving 3D landmark-based analysis have made marked improvements but nevertheless still rely on an expert handpicking a set of landmark points that represent the geometry of an entire object. The representation of shape by a relatively few


© 2016 The Paleontological Society. All rights reserved.


landmarksissubjectivebecause user-selected points are chosen for the ease of consistent identification by the user and not necessarily because they represent points with the greatest varianceamonggroups.Additionally, important shape variation outside the landmarks, such as concavity versus convexity,will not be captured by these methods, limiting their usefulness in many situations. To mitigate these problems, we apply a


recent computational-geometry technique called continuous Procrustes distance, or CP distance (see Lipman et al. [2013]). This methodology determines dissimilarity, or distance, between pairs of 3D surface scans of specimens drawn from mixed populations of species. Form taxa are best separated by incorporating a particular combination of geometric features of the 3D scans (such as curvature and area density) into the CP-distance algorithm. The statistical


0094-8373/16


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192