search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
582


BOAG ET AL.


biases beyond in vivo position relative to the sediment–water interface difficult. There are several implications of these


results. First, Ediacaran taxonomy does not appear to suffer from any litho-preservational barriers among taxa preserved via moldic impressions in siltstone–sandstone grained siliciclastic settings. As discussed, this trend extends into the heavily undersampled carbo- nate facies (e.g., Chen et al. 2014). Second, from a worker effort or “search image” perspective, further explorative work for new Ediacaran localities should remain focused on identifying heterolithic sedimentary packages with sedimentological and structural properties suitable for moldic preservation: abundant MISS, cleavage planes that align with original bedding surfaces, and well-defined bedding soles, which are often formed via contourite and/or turbidity currents (Sperling et al. 2015), and not limited to just siliciclastic sandstone and siltstone lithofacies. Finally, these data may point to the impor-


tance of microbial mats, and not necessarily lithology, in the overall mold-forming process. It is well documented that Ediacaran seafloors were marked by global evidence for extensive microbial mats and absence of deep bioturba- tion (Mángano and Buatois 2014; Davies et al. 2016). These mats would therefore have supported large populations of decay bacteria and created an effective seal over newly buried organisms. This seal would have largely restricted the flux of an oxygenated water column into dysoxic–anoxic pore waters beneath the sediment–water interface, producing geochemical conditions that would heavily favor early diagenetic precipitation of preserving minerals such aspyrite (see above; Darroch et al. 2012). In addition, scavenging and macrophagy are conspicuously absent until the latest Ediacaran, creating ecosystems with minimal biological biostratinomic destruction (Kenchington and Wilby 2014). These conditions have led several authors to suggest the overall fidelity of Ediacaran soft- tissue preservation was vastly superior to that of the Phanerozoic (Brasier et al. 2010). As such, exceptional moldic preservation in the Ediacaran should permit a robust represen- tation of true biological patterns with relatively


few taphonomic biases in comparison with Phanerozoic settings. Furthermore, as microbial mats appear ubiquitous in their temporal, geographic, and bathymetric distribution in the Ediacaran prior to large-scale metazoan bioturbation, the spatial/temporal partitioning of mats as a potential taphonomic bias in the Ediacaran appears largely decoupled from the other factors tested in this study (Laflamme et al. 2011a, 2013). Despite the pervasiveness of the moldic


taphonomic window in the Ediacaran, it is important to note that moldic preservation may exert a bias against epifaunal taxa that extend into the water column (Kenchington and Wilby 2014). Consequently, much of the Ediacaran fossil record is dominated by taxa that are proximal to the sediment–water interface, such as the discoidal taxon Aspidella (Laflamme et al. 2011b), regarded to be the anchoring holdfasts for fronds (Gehling et al. 2000). Rarely are both holdfast and frond preserved on the same bedding surface (e.g., Laflamme et al. 2004; Narbonne et al. 2014: Fig. 4.4). Rather, fronds appear either without associated holdfast in instances where the disk remained buried within the sediment both in vivo and during preservation (Laflamme et al. 2007, 2011b), or more commonly, the frond itself will be absent, leaving only bedding surfaces covered in holdfasts in varying styles of preservation (Tarhan et al. 2010; Kenchington and Wilby 2014). The ubiquity of holdfasts and comparative rarity of preserved fronds is a critical unresolved taphonomic bias present in the current Ediacaran record (Laflamme et al. 2011b). As holdfasts cannot be rigorously correlated with specific frondose taxa (Burzynski and Narbonne 2015), this reinforces that both the diversity and stratigraphic range of frondose taxa are likely highly underrepresented in localities with dense holdfast assemblages (Darroch et al. 2015).


Sampling Intensity and Lithology Limit Carbonaceous Compressions


Although the mid-late Ediacaran macro-


fossil record is dominated by moldic soft-tissue preservation, in several cases carbonaceous


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192