search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MEASURING OCCUPANCY


sum is divided among taxa and among how many taxa. There are 960 sampled genera. The coverage estimate implies that there are at least 490 unsampled genera, accounting for a summed occupancy probability of 6.18, and that the sampled genera account for a summed occupancy probability of 31.28. The estimated mean occupancy probability for sampled genera is therefore 0.0326 (31.28/960). The lower bound on the number of unsampled genera gives upper bounds for the mean occupancy probability equal to 0.0126 (6.18/490) for unsampled genera and 0.0258 (37.46/[960 + 490]) for all genera. The truncated log-normal fit yields estimates of mean occupancy probability equal to 0.0329 for sampled genera (eq.A14); 0.0073 for unsampled genera (eq. A12); and 0.0210 for all genera (eq. A10). Thus, the estimates of the summed occupancy probabilities accounted for by the sampled versus unsampled genera are quite similarwith the twomethods;where they differ is in the estimated or implied number of unsampled genera and therefore the mean occupancy probability of unsampled genera and of all genera. Carrying out the same calculations for all


stages, the coverage-based estimate of mean occupancy probability for all taxa is consis- tently higher than the estimate based on the method of this paper (Fig. 13A), whereas the two estimates are nearly identical for sampled taxa (Fig. 13B). For these data, the standard error of the coverage-based estimates is gen- erally smaller. Presumably this result reflects the fact that the method is distribution free. If for each stage we focus exclusively on


genera that are known both immediately before and immediately after the stage (as in Fig. 8), we can use the sampled genera to produce occupancy estimates for all genera and compare these estimates to direct tabula- tions, because we know how many of the through-ranging genera have k=0. Figure 14 compares the two methods with respect to estimated mean occupancy for all genera (Fig. 14A) and the proportion of genera sampled at least once (Fig. 14B). The coverage-based estimates tend to overpredict these values, again an expected consequence of the estimation of a lower bound on the number of unsampled species.


(A)


0.000 0.005 0.010 0.015 0.020 0.025 0.030


0.000 0.005 0.010 0.015 0.020 0.025 0.030 (B) 0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.010 0.015 0.020 0.025 0.030 0.035 0.040


Estimate from fitting log-normal distribution of occupancy probabilities


FIGURE 13. Estimated mean occupancy probabilities, comparing log-normal fit (abscissa) to coverage- based estimate (ordinate). Each point is a stage. Error bars are ±1 SE, based on bootstrap resampling of genera within stages. Consistent with the results of Fig. 12, the two methods yield comparable occupancy probabilities for sampled taxa, whereas the log-normal fit yields lower estimates for unsampled taxa and for all taxa combined.


p (sampled taxa) p (all taxa)


719


These last results suggest that the method


developed herein may allow improved estimates of the mean occupancy probability of all taxa, sampled and unsampled, but it would be premature to generalize without further empirical and simulation studies and other approaches to estimating the


Estimate from coverage theory


Estimate from coverage theory (upper bound)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192