726
MICHAEL FOOTE
Slocomb, J., B. Stauffer, and K. L. Dickson. 1977. On fitting the truncated lognormal distribution to species-abundance data using maximum likelihood estimation. Ecology 58:693–696.
Solow, A. R., and W. Smith. 1997. On fossil preservation and the stratigraphic ranges of taxa. Paleobiology 23:271–277.
Stevens, G. C. 1989. The latitudinal gradient in geographic range: how so many species coexist in the tropics. American Naturalist 133:240–256.
Wagner, P. J., and J. D. Marcot. 2013. Modelling distributions of fossil sampling rates over time, space, and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4:703–713.
Wagner, P. J., M. A. Kosnik, and S. Lidgard. 2006. Abundance distributions imply elevated complexity in post-Paleozoic marine ecosystems. Science 314:1289–1292.
Willig,M. R., D. M. Kaufman, and R. D. Stevens. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273–309.
Willis, J. C. 1926. Age and area. Quarterly Review of Biology 1: 553–571.
Appendix: Estimating Occupancy Probabilities
The goal is to find the occupancy probability,
p, that is, the probability that a species will occupy a site, if p is constant, or the probability distribution of p, f(p), if p varies. This distribu- tion is distinct from the frequency distribution of the number of sites occupied, k. For example, if p is constant, k follows a binomial distribu- tion. See Figure 4 for other examples. The number of sites is denoted n and the observed number of species S. For a given n and p, the probability that
exactly k sites will be occupied is given by the binomial:
B k; n; p ðÞ¼ pkð1pÞ
n k
nk: (A1)
The probability that no sites will be occupied is equal to 1 − (1 − p)n. Therefore, the condi- tional probability that exactly k sites will be occupied, given that k>0, is given by
B0 k; n; p ðÞ¼ 1 1p B k; n; p
ðÞ ðÞ
n : (A2)
Therefore, if p is a constant, the likelihood of p, given a set of ki and ni (i=1, …, S)is proportional to
L p; k; n
ðÞ¼Y S
pki i¼1 1 1p
ðÞ ; ðÞ
1p
niki ni
(A3)
omitting the constant factors of ni ki
ðÞ¼Y n
"#Nk pk 1p
ðÞ k¼1 1 1p ðÞ
nk n
; : If n is
the same for all species, this simplifies to L p; k; n
(A4) where Nk is the number of species occupying
exactly k sites. This likelihood is maximized by finding the value of p such that k ¼
np 1 1p ðÞ n ; (A5)
where k ¼Pki=S is the mean value of k (Fisher 1936: eq. 2). See Figures 1 and 2.
If p varies, then the probability that exactly
k out of n sites will be occupied is obtained as the binomial probability for a given value of p, weighted by the probability density of p and integrated over all values of p:
P k; n;Θ Ð pmax ðÞ¼
0 fp ðÞdp Ð pmax
ðÞB k; n; p 0 fp
ðÞdp ; (A6)
where Θ denotes the parameters that describe the density function f(p), and pmax is the maximum value of p over which the prob- ability density is integrated. This can be prescribed (e.g., as 1.0) or treated as a free parameter to be estimated. The denominator in the foregoing expression is necessary in cases in which we integrate over a range of values of p that does not sum to unity. For example, a log-normal distribution extends to +∞, but we cannot integrate p past 1.0. The probability that no sites will be occupied is P(0; n), the probability that at least one site will be occupied is 1 − P(0; n) (Fig. 4), and thus, the conditional probability that exactly k of n sites will be occupied, given that k>0, is given by
P0 k; n;Θ ðÞ¼ 1P0;n;Θ P k; n;Θ
ðÞ : ðÞ
(A7)
In the case of the log-normal, the parameters are μlog, the mean of the logarithm of p; σlog, the standard deviation of the logarithm of p; and pmax. The likelihood ofΘgiven a set of ki and ni, (i=1,…, S) is given by
L Θ; k; n
ðÞ¼Y S
i¼1 P0 Θ; ki; niðÞ: (A8)
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192