search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
726


MICHAEL FOOTE


Slocomb, J., B. Stauffer, and K. L. Dickson. 1977. On fitting the truncated lognormal distribution to species-abundance data using maximum likelihood estimation. Ecology 58:693–696.


Solow, A. R., and W. Smith. 1997. On fossil preservation and the stratigraphic ranges of taxa. Paleobiology 23:271–277.


Stevens, G. C. 1989. The latitudinal gradient in geographic range: how so many species coexist in the tropics. American Naturalist 133:240–256.


Wagner, P. J., and J. D. Marcot. 2013. Modelling distributions of fossil sampling rates over time, space, and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4:703–713.


Wagner, P. J., M. A. Kosnik, and S. Lidgard. 2006. Abundance distributions imply elevated complexity in post-Paleozoic marine ecosystems. Science 314:1289–1292.


Willig,M. R., D. M. Kaufman, and R. D. Stevens. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273–309.


Willis, J. C. 1926. Age and area. Quarterly Review of Biology 1: 553–571.


Appendix: Estimating Occupancy Probabilities


The goal is to find the occupancy probability,


p, that is, the probability that a species will occupy a site, if p is constant, or the probability distribution of p, f(p), if p varies. This distribu- tion is distinct from the frequency distribution of the number of sites occupied, k. For example, if p is constant, k follows a binomial distribu- tion. See Figure 4 for other examples. The number of sites is denoted n and the observed number of species S. For a given n and p, the probability that


exactly k sites will be occupied is given by the binomial:


B k; n; p ðÞ¼ pkð1pÞ


n k


nk: (A1)


The probability that no sites will be occupied is equal to 1 − (1 − p)n. Therefore, the condi- tional probability that exactly k sites will be occupied, given that k>0, is given by


B0 k; n; p ðÞ¼ 1 1p B k; n; p


ðÞ ðÞ


n : (A2)


Therefore, if p is a constant, the likelihood of p, given a set of ki and ni (i=1, …, S)is proportional to


L p; k; n


ðÞ¼Y S


pki i¼1 1 1p


ðÞ ; ðÞ


1p


niki ni


(A3)


omitting the constant factors of ni ki


ðÞ¼Y n


"#Nk pk 1p


ðÞ k¼1 1 1p ðÞ


nk n


; : If n is


the same for all species, this simplifies to L p; k; n


(A4) where Nk is the number of species occupying


exactly k sites. This likelihood is maximized by finding the value of p such that k ¼


np 1 1p ðÞ n ; (A5)


where k ¼Pki=S is the mean value of k (Fisher 1936: eq. 2). See Figures 1 and 2.


If p varies, then the probability that exactly


k out of n sites will be occupied is obtained as the binomial probability for a given value of p, weighted by the probability density of p and integrated over all values of p:


P k; n;Θ Ð pmax ðÞ¼


0 fp ðÞdp Ð pmax


ðÞB k; n; p 0 fp


ðÞdp ; (A6)


where Θ denotes the parameters that describe the density function f(p), and pmax is the maximum value of p over which the prob- ability density is integrated. This can be prescribed (e.g., as 1.0) or treated as a free parameter to be estimated. The denominator in the foregoing expression is necessary in cases in which we integrate over a range of values of p that does not sum to unity. For example, a log-normal distribution extends to +∞, but we cannot integrate p past 1.0. The probability that no sites will be occupied is P(0; n), the probability that at least one site will be occupied is 1 − P(0; n) (Fig. 4), and thus, the conditional probability that exactly k of n sites will be occupied, given that k>0, is given by


P0 k; n;Θ ðÞ¼ 1P0;n;Θ P k; n;Θ


ðÞ : ðÞ


(A7)


In the case of the log-normal, the parameters are μlog, the mean of the logarithm of p; σlog, the standard deviation of the logarithm of p; and pmax. The likelihood ofΘgiven a set of ki and ni, (i=1,…, S) is given by


L Θ; k; n


ðÞ¼Y S


i¼1 P0 Θ; ki; niðÞ: (A8)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192