search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
586


BOAG ET AL.


preserve an assemblage of carbonaceous com- pressions of taxa similar to the >551.09±1.02Ma Miaohe assemblage in the uppermost Doushantuo Formation of south China (Condon et al. 2005; Xiao et al. 2002). Several authors have referred to the


Khatyspyt Formation as “Avalon-type,” based on its relatively deep-water distal carbonate ramp depositional setting, presence of fronds, and absence of typical White Sea biota (Grazh- dankin et al. 2008; Rogov et al. 2012). Interest- ingly, our ordination plots do not place the Khatyspyt within the Avalon-type taxonomic designation, and instead agree with the results of Waggoner (2003) by placing it squarely within the White Sea assemblage ([Kh_khat] in Figs. 1, 4). From a stratigraphic perspective, a maximum age for the Khatyspyt assemblage is provided by a volcaniclastic breccia unit, which crosscuts the overlying Kessyusa Formation and is dated at 543.9±0.3Ma (Bowring et al. 1993; Knoll et al. 1995). However, the presence of Cambrian shelly tubular taxa Cambrotubulus and Anabarites in the intermediary Turkut Formation (Brasier et al. 1996; Maloof et al. 2010) reinforces that the underlying Khatyspyt assemblage remains poorly constrained as an important deep-water end member for the terminal Ediacaran. Traditional shallower-water Nama-type local-


ities display unusually depauperate populations of taxa and are principally separated into two populations. Limestones and micritic mudstone horizons preserve mineralizing taxa such as Cloudina Pflug, 1972, Namacalathus Grotzinger et al., 2000, and Namapoikia Wood et al., 2002 [Nam_drie], [Sali_1], [Lijian], [Omn] (Grotzinger et al. 2000; Hofmann andMountjoy 2001; Wood et al. 2002;Amthor et al. 2003), often co-occurring with the tubular genus Corumbella Hahn et al., 1982 [MatoGDS], [Loc1], [Loc2] (Babcock et al. 2005; Warren et al. 2011; see Figs. 2, 4). The global distribution of these taxa, coupled with their abundant and consistent preservation in terminal Ediacaran (549–541Ma) carbonate successions favors this association as an excellent candidate for a globally correlative biozone (Grant 1990; Warren et al. 2011). The few soft-bodied Ediacara biota in theNamaassemblage such as Pteridinium Gürich, 1930, Rangea Gürich, 1933, Charniodiscus Ford, 1958, Namalia Germs, 1968, and Nasepia


Germs, 1973 (and perhaps Swartpuntia Narbonne et al., 1997—see Ivantsov and Fedonkin 2002) are in fact also found in assemblages taxonomically assigned to both the White Sea and Avalon (Gehling and Droser 2013; Narbonne et al. 2014). This is an important detail that suggests the disparate taxonomic ordination visible for the Nama assemblage (Fig. 4: [Nam_hf], [Nam_aa], [Nam_sw], [Car_SB], [DeaV3], [Muz2Sh]) is mostly due to the absence of diverse White Sea clades (Bilateralomorphs, Dickinsoniomorpha, and Triradialomorpha) from the terminal Edia- caran rather than the emergence of novel taxa (such as at [Gaoj] and [Lijian] localities; Fig. 2). The extent to which this represents a genuine biological signal has been explored in recent studies (Gehling and Droser 2013; Darroch et al. 2015),which recognize that the absence ofWhite Sea fauna in less diverse Nama-aged strata of analogous paleoenvironmental and taphonomic conditions may represent a global-scale episode of protracted extinction. If the depauperateNama assemblages do in fact represent surviving taxa with a shared ecological association with White Seabiota,thishypothesiswould also positthat surviving taxa (such as Erniettomorphs and Rangeomorphs) should be composed of ecologi- cal generalists or opportunists with broad niche tolerances (see next section; Darroch et al. 2015). Such a scenario may also be reflected by the utilized morphospaces of Ediacara-type biota, which remained largely unchanged between the White Sea and Nama after initial expansion observed within the Avalonian assemblage. Alackof significant morphological diversifica- tion among Ediacara taxa thereaftermay indicate that these organisms could have become developmentally or ecologically entrenched (Shen et al. 2008) and would therefore be gradually outcompetedby skeletonizing, tubular, and trace-making animals thatwere increasing in both diversity and autecological complexity throughout the terminal Ediacaran.


Paleoenvironmental Distribution of the Ediacara Biota


To link temporal changes in global diversity


with responses to ecological disparity in the Ediacaran record, it is critical to identify patterns in paleoenvironmental partitioning


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192