search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
LOCOMOTION IN TRIADOBATRACHUS


has usually been associated with features of a morphofunctional complex formed by the ilia, sacrum, urostyle, and hindlimbs (Emerson and De Jongh 1980; Jenkins and Shubin 1998; Přikryl et al. 2009; Reilly and Jorgensen 2011; Sigurdsen et al. 2012; Jorgensen and Reilly 2013). However, when the morphology of T. massinoti is studied in a phylogenetic context, it appears that elements of this complex did not evolve in a concerted fashion (Fig. 5). This is evident in the early appearance of a frog-like ilium in salientian evolution, as shown by T. massinoti, preceding that of other distinct features of the anuran Bauplan, such as fused zeugopodial bones and urostyle (Fig. 5). This evolutionary decoupling is partially mirrored in the ontogeny of extant frogs, which achieve adult locomotor behavior before the end of metamorphosis, when the limbs are already functional but the sacrum, urostyle, and pelvis are still disarticulated (Fabrezi et al. 2014). In this context, derived postcranial features that T. massinoti shares with frogs, like iliac morphology, would not have originally been linked to a saltatory locomotion and, thus, they might have been co-opted as exaptations in jumping anurans. These interpretations widen the morphological gap between T. massinoti and the earliest frog-like salientians, leaving open questions about the role of locomotion in the origin of the anuran Bauplan.


Acknowledgments We are grateful to A. Báez (Universidad de


Buenos Aires), who kindly provided the high-resolution mold of the holotype of Triadobatrachus massinoti. Thanks are extended to M. Fabrezi (Museo de Ciencias Naturales, Salta) and J. Faivovich (Museo Argentino de Ciencias Naturales) for access to materials under their care. Thanks to P. Milla Carmona (Universidad de Buenos Aires) for his help with the statistical data analyses. This work was supported by grants from AgenciaNacional de Promoción Científica y Tecnológica, and the Universidad de Buenos Aires (UBACyT). A.I.L. is a postgraduate fellow of Consejo Nacional de Investigaciones Cientificas y


621


Tecnológicas (CONICET). R.O.G. and I.M.S. are members of Carrera del Investigador Científico (CONICET).


Literature Cited


AmphibiaWeb. 2015. Information on amphibian biology and conservation. http://amphibiaweb.org, accessed 23 September 2015.


Ashley-Ross, M. A., R. Lundin, and K. L. Johnson. 2009. Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa. Journal of Experimental Zoology 311:240–257.


Báez, A.M., and N. G. Basso. 1996. The earliest known frogs of the Jurassic of South America: review and cladistic appraisal of their relationships. Münchner Geowissenschaftliche Abhandlungen 30:131–158.


Barr, W. A., and R. S. Scott. 2014. Phylogenetic comparative methods complement discriminant function analysis in ecomor- phology. American Journal of Physical Anthropology 153: 663–674.


Davis, E. B., and B. K. McHorse. 2013. A method for improved identification of postcrania frommammalian fossil assemblages: multivariate discriminant function analysis of camelid astragali. Palaeontologia Electronica 16:27A. http://palaeo-electronica. org/content/2013/539-discriminant-id-of-postcrania.


Dong, L., Z. Roček, Y. Wang, and M. E. H. Jones. 2013. Anurans from the Lower Cretaceous Jehol Group of western Liaoning, China. PLoS ONE 8:e69723.


Duellman, W. E. 1992. Reproductive strategies of frogs. Scientific American 267(1), 80–87.


Emerson, S. B. 1976. Burrowing in frogs. Journal of Morphology 149:437–458.


——. 1978. Allometry and jumping in frogs: helping the twain to meet. Evolution 32:551–564.


——. 1979. The ilio-sacral articulation in frogs: form and function. Biological Journal of the Linnean Society 11:153–168.


——. 1988. Convergence and morphological constraint in frogs: variation in postcranial morphology. Fieldiana Zoology 43:1–19.


Emerson, S. B., and H. J. De Jongh. 1980. Muscle activity at the ilio- sacral articulation of frogs. Journal of Morphology 166:129–144.


Emerson, S. B., J. Travis, and M. A. Koehl. 1990. Functional com- plexes and additivity in performance: a test case with “flying” frogs. Evolution 44:2153–2157.


Enriquez-Urzelai, U., A. Montori, G. A. Llorente, and A. Kaliont- zopoulou. 2015. Locomotor mode and the evolution of the hin- dlimb in western Mediterranean anurans. Evolutionary Biology 42:199–209.


Essner, R., Jr., D. J. Suffian, P. J. Bishop, and S. M. Reilly. 2010. Landing in basal frogs: evidence of saltational patterns in the evolution of anuran locomotion. Naturwissenschaften 97:935–939.


Estes, R., and O. A. Reig. 1973. The early fossil record of frogs: a review of the evidence. Pp. 11–63 in J. L. Vial, ed. Evolutionary biology of the anurans: contemporary research on major pro- blems. University of Missouri Press, Columbia.


Evans, S. E., and M. Borsuk-Białynicka. 1998. A stem-group frog from the Early Triassic of Poland. Acta Palaeontologica Polonica 43:573–580.


Fabrezi, M., A. S.Manzano, V. Abdala, and F. Lobo. 2014. Anuran locomotion: ontogeny and morphological variation of a distinctive set of muscles. Evolutionary Biology 41:308–326.


Frost, D. R. 2015. Amphibian species of the world: an online refer- ence. Version 6.0. http://research.amnh.org/vz/herpetology/ amphibia/index.html, accessed 8 June 2015.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192