search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
PHYSICOCHEMICAL CONTROLS ON FORAMINIFERAL SIZE


reflects the amount of food available to benthic life. McClain et al. (2012b) used the model of Lutz et al. (2007) to estimate the export flux of POC to the seafloor (g of C m−2 year−1)in order to study the influence of food availability on patterns of marine mollusk body-size distributions. The model of Lutz et al. (2007) predicts the annual flux of POC to the seafloor using an algorithm that incorporates POC flux sediment trap measurements and remotely sensed sea surface temperature and net primary production data. This POC flux model yields an average grid spacing of ~12.5km and provides the best estimate of energy resource availability on the seafloor for both shallow and deep-water sites. This model also confirms that sites with the greatest seasonal variability in surface-water primary productivity receive higher POC fluxes because new production outpaces decompositional activity, thereby allowing a greater proportion of POC to be exported. Following the methods of McClain et al. (2012b), we applied the model of Lutz et al. (2007) to test the constraint food availability places on benthic foraminiferal test morphology.


localities to the nearest grid points for these data. Using the R package seacarb, Version 3.0.11 (Gattuso et al., 2015), we estimated the calcite saturation state of seawater for each locality. Alkalinity, DIC, salinity, temperature, and pressure (estimated in bars by dividing meters below sea level by 10) are required input parameters for seacarb to determine the calcite saturation state of the seawater. The mean annual flux of POC to the seafloor


Statistical Analysis and Model Selection


We applied a predictor–corrector method to compute the regularization path of generalized linear models to identify the best environmen- tal predictors of North American benthic foraminiferal test size and volume–to–surface area ratio. We used the R package glmpath, Version 0.97 (Park and Hastie 2013) to compute a series of multiple linear regression solutions, in which each new solution introduces an additional environmental parameter, estimat- ing the coefficients with less regularization (i.e., a larger sum of the absolute values of the coefficients) based on the previous solution.


599


We included the following environmental parameters in the model: mean annual tem- perature (°C), dissolved oxygen concentration (ml/liter), POC flux to the seafloor (g of Cm−2), and calcite saturation state. Only sites that had environmental data for all four predictor variables were included in the analyses. The mean values of the oceano- graphic variables at each site represent the environmental conditions that foraminiferal species might experience over their life span; for example, the maximum and minimum temperature at a site are strongly correlated with the mean annual temperature (p < 0.0001, adjusted R2 = 0.89 and p < 0.0001, adjusted R2 = 0.90, respectively). Prior to analyses, each environmental parameter was rescaled to mean zero and unit variance to enable direct comparison of regression coefficients and, thus, the L1-regularized regression approach. Test volumes and volume–to–surface area ratios were log10-transformed prior to analysis. We analyzed the foraminiferal data set pre- sented here for the North American continental margin as a whole, and then compared the Pacific and Atlantic open-marine continental shelf environments. We used the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to determine the best model in each analysis. In cases in which the best model differed between AIC and BIC metrics, we selected the simpler model (i.e., the model with the fewest environmental predic- tors) (Payne et al. 2012b).


Results Foraminiferal test size and volume–to–surface


area ratio from the North American continental margin are most strongly correlated with seawater temperature and dissolved oxygen concentrations (Fig. 2). Temperature is inversely correlated with (log10-transformed) test volume and volume–to–surface area ratio, whereas, oxygen is positively correlated with both measures of morphology (Fig. 2). In both cases, the direction of association is consistent with expectations from physiological first principles (Chapelle and Peck 1999; Gillooly et al. 2001). Theabsolutevalue of


thecoefficient for temperature is larger than that for oxygen,


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192