search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
INTERVERTEBRAL JOINT POLARITY IN SAUROPODS


immobilized relative to the trunk. In this case, caudal opisthocoely would be the stable configuration and procoely comparatively unstable. Although this interpretation is mechanically plausible, there is no anatomical evidence to suggest that Opisthocoelicaudia was more likely to adopt a tripodal stance than other titanosaurs. Apart from caudal opistho- coely, the skeletal characteristics used to sug- gest a tripodal stance for Opisthocoelicaudia are shared with other titanosaurs, which have procoelous caudal vertebrae (Powell 2003). Nopcsa (1930) similarly applied the concept of a reversal of forces to explain presacral pro- coely in crocodylians and squamates. He rea- soned that the sprawling posture and hind limb–driven locomotion of these animals would create forces acting from posterior to anterior. As a result, the head and shoulders would act as the fixed end of the vertebral column, and procoely would be favored. This hypothesis does not account for the diversity of locomotor patterns utilized by crocodylians (e.g., Renous et al. 2002) and squamates (e.g., Russell and Bauer 1992). It might, however, offer an explanation for cervical procoely in crocodylians and pterosaurs. During crocody- lian swimming and pterosaur flight, propul- sion is generated posterior to the neck by the tail or the wings. Thus, the forces acting on the neck should be oriented as proposed by Nopcsa (1930). These explanations remain conjectural in the absence of empirical data on how forces are distributed in the reptilian ver- tebral column during each of the different locomotor behaviors. Rotational Stability in the Appendicular


Skeleton.—The earliest research into concavo- convex joint polarity (e.g., Fick 1845; Henke and Reyher 1874; Fick 1890) wasmotivated to explain the patterns present in the human appendicular skeleton. If the polarity of concavo-convex intervertebral joints determines their rotational stability, it must be considered whether the same is true of appendicular joints. The tetrapod glenohumeral and femoro-acetabular joints exhibit a strong preferential joint polarity; in each, the stylopodium (viz., humerus, femur) bears a proximally facing condyle that fits into a socket on one or more girdle elements. That the cotyle in these joints faces away from the body


639


seems, at first, to be at odds with the pattern found in the sauropod neck and tail. However, during standing and in the stance phase of locomotion, the limb is braced against the ground, and the body is free to rotate about it. Thus, the weight-bearing autopodium in contact with the ground is the fixedelement andthe body, which is the more mobile element, bears the concavity. This is mechanically equivalent to the condition in the sauropod neck and tail, in which the distal vertebra in each joint is more mobile and bears the cotyle. Phylogenetic evidence supports the inter-


pretation that the tetrapod glenohumeral and femoro-acetabular joint polarity provides sta- bility when the limbs are braced against the ground, supporting the body. In the extant outgroups of Tetrapoda, the lungfishes and coelacanths, the glenoid and acetabulum are convex (Rosen et al. 1981; Janvier 1996), indicating that the tetrapod condition evolved via a reversal of joint polarity. This reversal can be explained by the changing forces associated with the transition from fins to limbs. The nontetrapod polarity would be more favorable in a swimming animal because the distal end of the fin is mobile relative to the body; it is this mobile element that bears the cotyle. This also explains why the shoulder girdle bears a convexity in the basal actinopterygian Polypterus, another aquatic vertebrate with monobasal fins (Pollard 1892). As tetrapodomorphs began to use their fins in weight support and for terrestrial locomotion, a switch to the “tetrapod-type” joint polarity would have been necessary to maintain joint stability. This interpretation does not explain the retention of the concave glenoid in secondarily aquatic tetrapods. Nonetheless, further investigation of the functional significance of appendicular joint polarity in sarcopterygian evolution is merited. The polarity of the human glenohumeral joint


is sometimes altered surgically with the implantation of a reverse shoulder prosthesis. This structure is intended to compensate for rotator cuff injury by medializing the center of rotation, increasing themechanical advantage of the deltoid (Grammont 1979). This is accom- plished by replacing the glenoid fossa with a convex element and the humeral head with a


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192