search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EDIACARAN DISTRIBUTIONS IN SPACE AND TIME


heightened emphasis on obtaining similarly accurate age constraints for the Avalon Penin- sula Conception Group. While the Conception Group records the oldest occurrence of Ediacaran body fossils (578.8±0.5 Ma; Van Kranendonk et al. 2008; Schmitz 2012) from the upper Drook Formation, the stratigraphic range of its Avalonian taxa are still poorly constrained by a maximum age of 565±3Ma (Benus 1988), taken from the upper Mistaken Point Formation. The ~1400m of overlying fossiliferous strata of the Trepassey and Fermeuse formations on both the Avalon and Bonavista peninsulas of Newfoundland lack any geochronological constraint (Williams and King 1979; Wood et al. 2003; Hofmann et al. 2008), and may provide a much younger maximum age for the Avalonian assemblage. It is also important to evaluate both taphonomic and stratigraphic gaps in the known record when assessing global trends in taxonomic diversity and evolution. Both first and last appearances of specific taxa can be highly concentrated along physical or preser- vational disconformities that truncate the stratigraphic range of taxa that would otherwise have first appeared or gone extinct in an unrecorded interval of time (Kidwell and Holland 2002). A similar effect can be induced by rapid up-section changes in paleoenviron- ment. These factors are both present in the uppermost stratigraphy of Newfoundland and Charnwood Forest. While fine- to medium-grained deep-water turbiditic facies preserve the fossil communities from the Bradgate Park Formation, the overlying Hang- ing Rocks Formation is bounded by an erosional surface. It is composed of poorly sorted volcanic epiclastic conglomerates and pyroclastic components, overlain by medium- grained sandstones and tuffaceous siltstones interpreted as turbidity currents carrying reworked detritus from much shallower fluvial or nearshore conditions (McIlroy et al. 1998). A similar shift in paleoenvironment occurs within the stratigraphy at Bonavista Peninsula. There, weak turbidity currents with thin inter- bedded fossil-preserving ash beds of the Fermeuse Formation grade into shallower prodelta and delta-front facies of the Renews Head Formation (Williams and King 1979;


585


O’Brien and King 2005). These facies shifts may have removed both the environmental conditions for a deep-water Avalonian biotope to exist and the Conception-style taphonomic window that preserves the majority of epifaunal fronds (Hofmann et al. 2008). Factors such as these reinforce the need for caution when interpreting the absence of certain taxa from the current Ediacaran record as a true biological signal (Sperling et al. 2015). Global studies of macroevolutionary patterns must take place within a stratigraphic framework that can statistically account for varying likelihoods of preservation, be it taphonomic, environmental, or a superposition of the two (Holland 1995, 2003). Given the current uncertainty in correlating the global Ediacaran stratigraphic record, the most rigorous method of assessing global trends in biodiversity should remain dedicated to geochronologically constrained outcrop-scale studies, which can better account for these preservational impacts on observed diversity (Darroch et al. 2015).


Assessing Biotic Turnover in the Depauperate Nama


The temporal overlap observed between the


White Sea and Nama assemblages is more complex. With the exception of the Khatyspyt Formation in the Olenek Uplift of Siberia (Grazhdankin et al. 2008), there is significant taxonomic separation between terminal Ediacaran strata (549–541Ma) and olderWhite Sea localities (Fig. 4). The deep-water Khatyspyt Formation [Kh_khat] is a unique assemblage in itself, plotting closelywith other White Sea localities (Waggoner 2003; this study), but lacking the iconic Dickinsonio- morph, Bilateralomorph, Kimberellomorph taxa that define the White Sea Region, Russia, and poorly age-constrained 556±24Ma, Australian assemblages (Preiss 2000). The Khatyspyt consists of the fronds Charnia and Khatyspytia Fedonkin, 1985 (in Fedonkin et al. 2007a), numerous Aspidella-type morphs, the serial Palaeopascichnus Palij, 1976, and sac-like Inaria preserved in nodular bituminous limestones (Knoll et al. 1995; Grazhdankin et al 2008). Interstratified within these limestones are calcareous mudstones, which


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192