search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
NONLANDMARK CLASSIFICATION IN PALEOBIOLOGY


classification of species. Specifically,DP distance finds the minimum value that the sum of all distances between corresponding points within the two landmark sets achieves as the config- urations are “aligned” in space(seeAtwood and Sumrall [2012] for details). In contrast, the CP-distance method developed in Lipman et al. (2013) is an extension of the DP distance. It incorporates full geometric information (read- ily available in 3D scans) such as curvature into the analysis. DP distance is computed via minimizing a sum of distances over a discrete setoflandmarks,whereas CP distance is computed viaminimizing integrals of geometric quantities. Both methods are scale and rigid- motion invariant. This is to say, the outcomes of the calculations are independent of the size and position/orientation of the scans and resulting landmarks. An overview of the CP-distance algorithm appears in the Supplementary Mate- rials. For specific details, see Lipman et al. (2013). In this study we use DP distance and CP


Atwood and Sumrall (2012) to verify the


distance to generate dissimilarity matrices associated to each data set. Each matrix’s i–j entry corresponds to the distance (or dissim- ilarity) between specimen i and specimen j. These matrices are symmetric, nonnegative,


and have only zeros along the diagonal. We first use the DP distance on pairs of landmark configurations fromAtwood and Sumrall (2012) to generate the matrix DAt, in an attempt to reproduce the results of Atwood and Sumrall (2012) in the dissimilarity-matrix language of this study. We then use the CP-distance algorithm on pairs of new 3D scans to generate the dissimilaritymatrixDCP.Finally,wedevisea methodology for comparing these matrices and determine whether they carry the same “clustering information” within them. Our specimen scans were performed at the


(medium) resolution of 4400 points per square inch. At this resolution, a mesh of about 5000 points represents a typical specimen (Fig. 2). To determine the breaking point of our method, we reran the whole matrix- comparison process using 3D scans artificially downsampled to resolutions of 50%, 20%, 10%, and 5% of the original scans. Downsampling was carried out using quadric edge collapse in MeshLab.


699 In this work we deploy three methods for


comparing dissimilarity matrices and their cluster information:


1. Mantel’s test (performed on two dissimilar- ity matrices of equal size) is used to check for correlations between each distance’s interspecimen measurements.


2. A multidimensional scaling algorithm is used for visualizing cluster information.


3. Aggregate clustering is applied to under- stand groupings at different scales.


1. Mantel’s Test Methodology.—Mantel’s test


is a standard statistical tool used to compare distance matrices, often used in a biological setting with actual distances (Sokal and Rohlf, 2012). Here we use Mantel’s test to compare the distance matrices DCP and DAt. It is important to note that both matrices represent mathematical metrics on the same kinds of objects,making this comparison a classical and direct use of Mantel’s test. The dimensions of these matrices must be equal for Mantel’s test to be used. Because we were not able to obtain full 3D scans of all the specimens of the Atwood and Sumrall (2012) study, the dissimilarity matrices DAt and DCP are of different sizes. To overcome this and at the same time use the most information possible, we proceed as follows. We randomly choose 20 specimens from within Atwood’s landmark data (52 specimens total) and produce a “submatrix” of DAt corresponding to the intersample DP distances between these 20 specimens; moreover, we make sure that the number of specimens from each species matches the amount in DCP. This sampling method means that the results of our test will address how similar the metrics are when considering the comparison of different species. We then carry out Mantel’s test between DCP and the randomly sampled submatrix of DAt. The sampling process is repeated 5000 times, 1000 times for each one of the four possible resolutions: 100%, 50%, 20%, and 10%, and once to cross-compare DAt with itself to see the effect of the sampling method on correlation values. In addition, Mantel’s test was also per-


formed pairwise between different resolutions ofDCP. This process was repeated 10,000 times,


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192