search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
LOCOMOTION IN TRIADOBATRACHUS


with Hecht (1962) and Rage and Roček (1986), we consider that the latter interpretation is unfounded and that the holotype would instead represent a postmetamorphic individual. This is evidenced by the extent of cranial bones that begin to ossify late in amphibian metamorphosis, or even after metamorphosis, such as the sphenethmoid and some dermal bones of the suspensorium (Maglia et al. 2007; Weisbecker and Mitgutsch 2010), together with the well-ossified posteromedial processes of the hyoid (Rage and Roček 1986; R. O. Gómez personal observation). Also, well-ossified carpals and tarsals of the holotype contrast with the cartilaginous condition of anuran larvae (Rage and Roček 1986), which is also that of many juvenile frogs and adult salamanders (Marjanović and Witzmann 2015; R. O. Gómez personal observation). On the other hand, unossified long bone epiphyses, as in the holotype of T. massinoti, have previously been considered indicative of immaturity (Rage and Roček 1986). Never- theless, basal salientians such as Notobatrachus degiustoi and species of Liaobatrachus are represented by articulated and well-preserved specimens also lacking ossified epiphyses that have been interpreted as mature individuals (Báez and Basso 1996; Gao and Wang 2001; Gao and Chen 2004; Dong et al. 2013). Addi- tionally, in several extant amphibian species, particularly salamanders, the epiphyses ossify late during ontogeny or even remain cartilagi- nous throughout most of their life (Marjanović and Witzmann 2015; R. O. Gómez personal observation). Therefore, morphology of the holotype of T. massinoti is consistent with that of adults of many amphibian species, and interpreting it as an immature individual requires additional ad hoc assumptions. Triadobatrachus Morphology and Locomotion.—


Our results show that the limb proportions of T. massinoti, though somewhat intermediate, are more similar to those of salamanders than of frogs, which is also reflected in the high posterior probability with which it was assigned to the LU group. These findings would indicate that salamander-like asynchronous lateral undulatory movements were an important part of the locomotor skill


619


repertoire of this taxon. This hypothesis is consistent with that of previous authors, who considered that T. massinoti’s axial and appendicular morphology “could have allowed quick crawling … but certainly not effective jumping” (Rage and Roček 1989: p. 15). In contrast, it has recently been suggested,


based primarily on the morphology of the humeral deltopectoral crest, allegedly similar to that of jumping frogs, “that hopping or jumping was an important form of locomo- tion” of T. massinoti, “perhaps combined with salamander-like crawling” (Sigurdsen et al. 2012: p. 87). Nevertheless, this morphology (Sigurdsen et al. 2012: Fig. 4) is also present in nearly all anurans, regardless of their loco- motor mode. Besides, humeral morphology might also be related to other aspects of anuran behavior, including feeding and mating (Duellman 1992; Grey et al. 1997; Sigurdsen et al. 2012). In this regard, the use of forelimbs during amplexus is ubiquitous among anurans and unique within amphibians (Wells 2007). If this mating behavior evolved early in salientian history, this might provide an alternative scenario for the humeral morphol- ogy seen in T. massinoti. Other authors, based on sacro-caudo-pelvic


complex morphology, have proposed that T. massinoti was able to move through frog-like synchronous limb movements, either by jumping on land (Shubin and Jenkins 1995; Jenkins and Shubin 1998) or swimming in an aquatic environment (Hecht 1962; Estes and Reig 1973). It has to be noted that the sacro-caudo-pelvic complex of T. massinoti shows a distinctive mosaic of features not seen in any other amphibian (Fig. 5C,D), which makes it difficult to interpret this structure functionally. This complex includes a pelvis with a derived iliac morphology similar to that of frogs, but unlike in frogs, the ischia are not fused. In turn, sacral morphology exhibits the plesiomorphic condition today seen in salamanders, with recurved ribs articulating with robust transverse processes (Rage and Roček 1989; Fig. 5A,B). This configuration suggests that the sacroiliac joint would be like that of salamanders, in which the sacral rib laterally contacts the medial surface of the iliac


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192