search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
710 (A) 0.06 0.05 0.04 0.03 0.02


MICHAEL FOOTE rs = 0.842 (B) 0.040 0.035 0.030 0.025 0.020 0.015


Modeling and Fitting the Distribution of Occupancy Probabilities


(C)


0.005 0.010 0.015 0.020 0.025 0.030 0.035


20 50 100 Number of sites (n) 200


Standardized quota of sites (m=21) rs = 0.874


I will illustrate the modeling of occupancy probabilities for the data on Phanerozoic marine animal genera using a log-normal distribution of p. This distribution has two parameters, μlog (the mean of the logarithm of p) and σlog (the standard deviation of the logarithm of p). Because the log-normal distribution allows for values up to +∞,we must modify it if we use it to model occupancy probabilities. I have therefore fitted a trunca- tion point, pmax, the maximumvalue that p can take on, as a third parameter. I will hereinafter refer to the resulting distribution as the


FIGURE 3. Analysis of data on marine animal genera, where k is the number of equal-area cells (2×105km2) occupied by a genus and n is the total number of cells with any data in a given stage. Each point denotes a single stage. A, Mean raw proportional occupancy, k=n.B, Haldane– Fisher maximum-likelihood estimate of occupancy probability, assuming p is constant for each stage. C, Maximum-likelihood estimate of p, assuming p is constant, when data are first subsampled, so each stage is represented by the same number of randomly chosen cells (equal to n = 21, the minimum among all stages), based on the mean of 100 replicates. Bias in k=n is expected even if p is constant. Bias in maximum-likelihood estimate is interpreted in part to reflect the fact that p is in fact a probability distribution for each stage and that higher values of p are sampled preferentially at lower values of n.


Full quota of sites rs = 0.671


occupancy probabilities, as we sample fewer sites we preferentially sample the species with higher occupancy probabilities, that is, the more common species. The shape of the distribution is crucial, because the probability that k>0 depends on it. Figure 4A shows examples for four different distributions that all have the samemean occupancy probability, p. Although the mean is the same, the prob- ability that k>0 varies substantially and is lower in each instance than it would be if p were constant (Fig. 4B,C). The Haldane– Fisher maximum-likelihood approach can easily be modified to encompass variability in p if we can either assume the distribution of p or fit it to the data. The essence lies in determining the probability that k out of n sites will be occupied for a given value of p and integrating this over the entire distribution of p (Appendix).


p (Fisher maximum-likelihood estimate) ^


p (Fisher maximum-likelihood estimate) ^


k n


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192