search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
660


SILVIA PINEDA-MUNOZ ET AL.


constraints, phylogenetic constraints, correla- tions with home range area, or the effects of predator–prey relationships (Gingerich 1989; Siemann and Brown 1999; Smith and Lyons 2011). Since we can observe really strong patterns across continents in the evolution of body-size distribution, it is important to test whether these trends might relate to different climates. Andrews et al. (1979) analyzed both diet and


body mass together with locomotion and tax- onomy to explore differences between ecosys- tems. He observed that mammals living in environments with similar climates displayed similar ecological diversity and thus similar ecomorphospace occupation. However, a direct relationship between diet and body mass was not explicitly quantified. Later, Fernández- Hernández et al. (2006) evaluated the power of Andrews’s variables for inferring environments and concluded that only body mass was significantly correlated with climate. However, the dietary classification used in these two studies was generalized and not statistically grounded. Pineda-Munoz and Alroy (2014) proposed a


statistically based classification scheme that emphasized major feeding resources. The categories were herbivory, carnivory, frugiv- ory, granivory, insectivory, fungivory, gumiv- ory, and generalized. The authors argued for abandoning the broadly used three-way herbivore–omnivore–carnivore categorization because it grouped together species with markedly different dietary specializations. Previous research has evaluated mammalian body size in relation to other ecological vari- ables such as physiology, ecology, or life history (Andrews et al. 1979; Eisenberg 1981; Demment and Van Soest 1985; Legendre 1986). However, their dietary classification might have hindered some evolutionary and ecologi- cal patterns. In the present work, we will use the data set from Pineda-Munoz and Alroy (2014) to show how this more detailed classification scheme discriminates between ecomorphological specializations. In particu- lar, we will link the near absence of medium- sizedmammals (1–30 kg) in open landscapes to the lack of fruit trees needed to support a pure frugivore diet all year round.


Methods We used a database compiled by Pineda-


Munoz and Alroy (2014) that summarizes the dietary preferences of 139 species of terrestrial mammals. We augmented this information with published body-mass values (Smith et al. 2003) (see Supplementary Table 1). Each species was classified as a dietary specialist if a single food resource made up 50% or more of the diet (Pineda-Munoz and Alroy 2014). Dietary data were compiled from primary sources presenting volumetric percentages of stomach contents. Despite the fact that stomach content analyses are not numerous, they provide direct feeding information with minimum degradation from digestive pro- cesses and more potential for identifying ingested foods. Thus, we restricted the main analysis to the species in that study. Dietary classifications included herbivory, carnivory, frugivory, granivory, insectivory, fungivory, gumivory, and generalization. Other research- ers have classified diet based on trophic relationships (herbivores, carnivores, and omnivores plus a few variations; Schoener 1989; Reed 1998). Although this can be a good background for some ecological studies, Pineda-Munoz and Alroy (2014) showed how species described as omnivores could display very distinctive dietary specializations (e.g., carnivore–herbivore and insectivore– granivore). To test whether the same ecomorphological


patterns could be observed on a wider scale, we also analyzed the mammal data of Wilman et al. (2014), a database that includes quantita- tive percent estimates of lifelong diet for 5400 mammal species. To make comparisons possi- ble, we restricted the analysis to terrestrial nonvolant species. Wilman and colleagues’ dietary classification divided the items found


in a given diet into 9 categories: birds, reptiles, fish, unknown vertebrates, scavenge-carrion, fruit, nectar, seeds, and plants. All vertebrate feeding resources (mammals, birds, fish, rep- tiles, and scavenge-carrion) were put in the same feeding category. Unfortunately, we were unable to discriminate fungus and root-feeding categories, because these were included in the vegetation category by Wilman


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192