712
MICHAEL FOOTE Two points to bear in mind before proceed-
ing: (1) The goal is to characterize and estimate the distribution of p (e.g., Fig. 4A) that under- lies the distribution of k (e.g., Fig. 4B), not the distribution of k itself (cf. Buzas et al. 1982). The shape of the distribution of k may resemble that of p, but clearly it need not do so. As an obvious example, if p is constant, k will have a binomial
(A) 400 Observed Predicted from fit 60 300 50 40 200 30 20 100 10 0 0 (C) 30 100 25 80 20 15 10 5 0 0.00 0.02 0.04 0.06 Occupancy probability (p) 0.08 0.10 60 40 20 0 0.00 0.02 0.04 0.06 Occupancy probability (p)
FIGURE 5. Example of fitting truncated log-normal distribution of occupancy probabilities to occupancy data for the Sandbian stage of the Late Ordovician. A, Observed frequency distribution of k and distribution predicted from best-fit log-normal distribution (B). C, Conditional probability distribution, corresponding to the best-fit curve in B, for the subset of genera with k>0. D, Conditional probability distributions for subsets of genera having specified values of k. Genera with higher values of k preferentially sample higher values of p, but even those with k=0 are inferred to represent a part of the probability distribution above zero.
0.08 0.10 5 10 15 Number of equal-area cells (k) Taxa with k > 0 (D) 120
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
20 0 0.00 0.02 0.04 0.06 Occupancy probability (p) 0.08 0.10
distribution. (2) As with the Haldane–Fisher approach, it will not be possible to estimate occupancy probability if all species are known from a single site. Figure 5A shows the frequency distribution
of k for an arbitrarily chosen time interval, the Sandbian stage of the Ordovician. There are 69 cells (n), the maximum value of k is 22, the
(B) All taxa (implicitly including those with k = 0)
Probability density
Number of genera
Probability density
Probability density
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192