search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
BODY-MASS TRENDS References


Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolu- tion in North American fossil mammals. Science 280:731–734.


——. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733.


Alroy, J., P. L. Koch, and J. C. Zachos. 2000. Global climate change and North American mammal evolution. Paleobiology 26: 259–288. Ashton, K. G.,M. C. Tracy, and A. de Quiroz. 2000. Is Bergmann’s rule valid for mammals? American Naturalist 156:390–415. Atwater, T., and J. Stock. 1998. Pacific–North America plate tectonics of the Neogene southwestern United States: an update. International Geology Review 40:375–402. Behrensmeyer, A. K., S. M. Kidwell, and R. A. Gastaldo. 2000. Taphonomy and paleobiology. Paleobiology 26:103–147. Bergmann, C. 1847. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger Studien 3:595–708. Berteaux, D., M. M. Humphries, C. J. Krebs, M. Lima, A. G. McAdam,N. Pettorelli, D. Réale, T. Saitoh, E. Tkadlec, R. B. Weladji, and N. C. Stenseth. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research 32: 151–158. Blackburn, T. M., and B. A. Hawkins. 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27: 715–724. Bradshaw, W. E., and C. M. Holzapfel. 2010. Light, time, and the physiology of biotic response to rapid climate change in animals. Annual Review of Physiology 72:147–166. Carrasco,M.A., B. P. Kraatz, E. B.Davis, andA.D. Barnosky. 2005. Miocene Mammal Mapping Project (MIOMAP). http://www. ucmp.berkeley.edu/miomap. Damuth, J. 1993. Cope’s rule, the island rule and the scaling of mammalian population density. Nature 365:748–750.


Davis, E. B., and N. D. Pyenson. 2007. Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 250:139–149.


Davis, E. B., J. L. McGuire, and J. D. Orcutt. 2014. Ecological niche models of glacial refugia show consistent bias. Ecography 37:1133–1138. Erlinge, S. 1987.Whydo European stoats Mustela erminea not follow Bergmann’s rule? Holarctic Ecology 10:33–39.


Foote, M., and D. M. Raup. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–140.


Fraser, D., C. Hassall, R. Gorelick, and N. Rybczynski. 2014. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PLoS One 9:e106499.


Geist, V. 1987. Bergmann’s rule is invalid. Canadian Journal of Zoology 65:1035–11038. Gingerich, P. D. 2003. Mammalian responses to climate change at the Paleocene–Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America Special Paper 369:463–478. Guralnick, R., and P. B. Pearman. 2010. Using species occurrence databases to determine niche dynamics of montane and lowland species since the Last Glacial Maximum. Pp. 125–135 in E. M. Spehn and C. Korner, eds. Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, Fla. Hollister, E. B., A. S. Englewood, A. J. M. Hammett, T. L. Provin, H. H. Wilkinson, and T. J. Gentry. 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME Journal 4:829–838.


Hopkins, S. S.B. 2007. Causes of lineagedecline in the Aplodontidae: testing for the influence of physical and biological change. Palaeogeography, Palaeoclimatology, Palaeoecology 246:331–353.


657


Humboldt, A., and A. Bonpland. 1807. Essay on the Geography of Plants. Schoell, Paris.


Hunt, G., and K. Roy. 2006. Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:1347–1352.


Intergovernmental Panel on Climate Change 2014. Climate change 2014: synthesis report. IPCC, Geneva.


James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51:365–390.


Janis, C. M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids. Pp. 255–300 in J. Damuth, and B. J. MacFadden, eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.


Janis, C. M., J.Damuth, and J.M. Theodor. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences USA 97:7899–7904.


Koch, P. L. 1986. Clinal geographic variation in mammals: impli- cations for the study of chronoclines. Paleobiology 12:269–281. Korpimäki, E., and K. Norrdahl. 1989. Avian predation on muste- lids in Europe 1: occurrence and effects on body size variation and life traits. Oikos 55:205–215.


Lillegraven, J. A. 1972. Ordinal and familial diversity of Cenozoic mammals. Taxon 21:261–274.


Liow, L. H., M. Fortelius, E. Bingham, K. Lintulaakso, H. Mannila, L. Flynn, and N. C. Stenseth. 2008. Higher origina- tion and extinction rates in larger mammals. Proceedings of the National Academy of Sciences USA 105:6097–6102.


Lovegrove, B. G., andM.O.Mowoe. 2013. The evolution ofmammal body sizes: responses to Cenozoic climate change in North Amer- ican mammals. Journal of Evolutionary Biology 26:1317–1329.


Lyons, S. K., and F. A. Smith. 2013. Macroecological patterns of body size in mammals across time and space. Pp. 116–146 in F. A. Smith, and S. K. Lyons, eds. Body size: linking pattern and process across space, time, and taxonomy. University of Chicago Press, Chicago.


MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. Cambridge University Press, Cambridge.


MacFadden, B. J., N. Solounias, and T. E. Cerling. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824–827.


Mayr, E. 1966. Animal species and evolution. Harvard University Press, Cambridge.


McNab, B. K. 1970. On the ecological significance of Bergmann’s rule. Ecology 52:845–854.


Meachen, J. A., and J. X. Samuels. 2012. Evolution in coyotes (Canis latrans) in response to the megafaunal extinctions. Proceedings of the National Academy of Sciences USA 109: 4191–4196.


Meachen, J.A., A. C. Janowicz, J. E. Avery, and R. W. Sadleir. 2014a. Ecological changes in coyotes (Canis latrans) in response to the Ice Age megafaunal extinctions. PLoS ONE 9:e116041.


Meachen, J. A., F. R. O’Keefe, and R. W. Sadleir. 2014b. Evolution in the sabre-tooth cat, Smilodon fatalis, in response to Pleistocene climate change. Journal of Evolutionary Biology 27:714–723.


Meiri, S., and T. Dayan. 2003. On the validity of Bergmann’s rule. Journal of Biogeography 30:331–351.


Millar, J. S., and G. J. Hickling. 1990. Fasting endurance and the evolution of mammalian body size. Functional Ecology 4:5–12.


Orcutt, J. D., and S. S. B. Hopkins. 2011. The canid fauna of the Juntura Formation (Late Clarendonian), Oregon. Journal of Vertebrate Paleontology 31:700–706.


——. 2013. Oligo-Miocene climate change and mammal body-size evolution in the northwest United States: a test of Bergmann’s Rule. Paleobiology 39:648–661.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192