search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EDIACARAN DISTRIBUTIONS IN SPACE AND TIME


compressions have been recovered. The most well-known instances of this occur in several Chinese localities, including the Gaojiashan Lagerstatte, Shaanxi Province (Cai et al. 2012), and the Miaohe and Wenghui biotas in the Hubei and Guizhou provinces, respectively (Xiao et al. 2002; Zhao et al. 2004) (Fig. 3: [Gaoj], [Miah1], [Jiang]). Carbonaceous compressions, formed via kerogenization (polymerization of organic molecules), are best known from the iconic Cambrian Burgess Shale; hence they are often referred to as Burgess Shale–type (BST) preservation (Orr 2014). Kerogenization is essential to BST preservation; however, it can be accompanied by two other miner- alization processes: authigenic pyritization and aluminosilicification, which can co-occur as a range of taphonomic end members that together contribute to the BST taphonomic mode (Cai et al. 2012; Schiffbauer et al. 2014). Database analysis has shown significant undersampling of fossiliferous shale litho- facies, identifying only 6 BST candidates from our 86 Ediacaran localities and >45 geological units: [Ong], [MatoGDS], [Jiang], [Gaoj], [Kh_khat],and [Miah1] (Fig. 3). These deposits all form in low-energy, deep-water distal offshore shelves or restricted basinal lagoons. Perhaps the most uncertain feature of Ediacaran BST deposits is the apparent exclusion of frondose taxa from this preserva- tional window (Steiner and Reitner 2001; Grazhdankin et al. 2008). The Khatyspyt Formation in Siberia [Kh_khat] is interpreted to be a distal, low-energy carbonate ramp, below storm-weather wave base (SWWB). Although it contains exquisitely preserved Rangeomorphs such as Charnia Ford, 1958, occurring as molds in authigenic carbonate cementation, these same frondose taxa are relegated to “phantoms” within inter- bedding carbonaceous compression windows (Grazhdankin et al. 2008: Fig. 3a–h). New Ediacaran localities with BST-type preserva- tion may therefore help to confirm the presence/absence of certain Ediacaran taxa from this mode of preservation, thus resolving issues associated with taphonomic effect versus ecological biofacies (Zhu et al. 2008; Gehling and Droser 2013; Kenchington and Wilby 2014; Carbone et al. 2015).


583 Temporal Distribution of Ediacara Biota


Chronostratigraphic Overlap of the Avalonian and White Sea Assemblages


Evolutionary succession has often been suggested as an important factor in the distribution of taxa in the Ediacaran macrofossil record. However, the ability to test the biotic assemblages as discrete temporal intervals has been limited by a lack of high-quality geochronology. We use a collection of updated publication data to reanalyze Waggoner’score assemblage concept as temporally distinct by binning Ediacaran localities into the traditionally accepted biostratigraphic intervals for the Avalon (579–559Ma), White Sea (558–550Ma), and Nama (549–541Ma) (Narbonne et al. 2012; see Supplementary Table S.5). If the hypothesis that the three assemblages represent a response to a temporal control on the distribution is correct, then temporal binning should also display a clear polygonal separation similar to the initial taxonomic separation (Fig. 1). Instead, NMDS ordination plots of time-binned localities reveal that temporal overlap is present between both the Avalon–White Sea andWhite Sea–Nama assemblages. These results agree with the current, albeit limited geochronological record (Fig. 4, discussed below), and are supported by beta-diversity (dissimilarity) metrics showing that temporal binning pro- duces the lowest diversity dissimilarity when compared with all other variables being tested (Table 2). However, upon further statistical analyses, the data produce contradictory results. When confidence ellipses were drawn around the class centroids for each time bin, they did not overlap, suggesting the assemblages are in fact temporally distinct at CI=95% (Supplementary Fig. S.4.D). These inconsistent resultsmay reflect differences in therelativesamplesizeoftested variables: abundant diversity data yield higher degrees of confidence and therefore a narrower overall confidence interval, while the limited number of geochronological dates requires significantly wider confidence intervals (see Supplementary Table S.5). At present, both NMDSandbeta-diversitydata support previous local-scale observations of contemporaneous but unrelated taxa partitioning into different depositional environments (Grazhdankin 2004;


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192