EDIACARAN DISTRIBUTIONS IN SPACE AND TIME
Orr, P. J. 2014. Late Proterozoic–Early Phanerozoic “taphonomic windows”: the environmental and temporal distribution of recurrent modes of exceptional preservation. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch. Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. Paleontological Society Papers. Paleontological Society Short Course 20.
Palij, V. M. 1976. Remains of soft-bodied animals and trace fossils from Upper Precambrian and Lower Cambrian of Podolia. Pp. 63–77 in V. A. Ryabenko, ed. Palaeontology and stratigraphy of the Upper Precambrian and Lower Paleozoic of the southwestern part of the East European Platform. Naukova Dumka, Kiev. Peterson, K. J., andN. J. Butterfield. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences USA 102:9547–9552. Peterson, K. J., J. B. Lyons, K. S. Nowak, C. M. Takacs, M. J. Wargo, andM.
A.McPeek. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences USA 101:6536–6541. Peterson, K. J., J. A. Cotton, J. G. Gehling, and D. Pisani. 2008. The Ediacaran emergence of bilaterians: congruence between genetic and the geological fossil records. Philosophical Transactions of the Royal Society B 363:1435–1443.
Pflug, H. D. 1972. Zur fauna der Nama-Schichten in Sudwest Afrika. I. Pteridinia, Bau und systematische Zugehorikeit. Palaeontographica Abteilung A 143:226–262.
Preiss, W. V. 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research 100:21–63.
R Core Team 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org. Rahman, I. A., S. A. F. Darroch, R. A. Racicot, and M. Laflamme. 2015. Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances. doi: 10.1126/sciadv.1500800. Riedman, L. A., S. M. Porter, G. P. Halverson, M. T. Hurtgen, and C. K. Junium. 2014. Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard. Geology 42:1011–1014. Schiffbauer, J.D., S. Xiao,
Y.Cai, A. F. Wallace,H. Hua, J. L. Hunter, H. Xu, Y. Peng, and A. J. Kaufman. 2014. A unifying model for Neoproterozoic–Paleozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications 5:5754. Schmitz, M. D. 2012. Appendix 2: radiometric ages used in GTS2012. Pp. 1045–1082 in F. Gradstein, J. Ogg, M. D. Schmitz, and G. Ogg, eds., The Geologic Time Scale 2012. Elsevier, Boston. doi:10.1016/B978-0-444-59425-9.15002-4. Seilacher, A. D. 1992. Vendobionta and Psammocorallia—lost constructions of Precambrian evolution. Journal of the Geological Society, London 149:607–613. Seilacher, A., D. V. Grazhdankin, and A. Legouta. 2003. Ediacara biota: The dawn of animal life in the shadow of giant protist. Paleontological Research 7:43–54. Shanker, R., and V. K. Mathur. 1992. Precambrian–Cambrian sequence in Krol Belt and Ediacaran fossils. Geophytology 22: 25–36.
Shen, B., L. Dong, S. Xiao, and M. Kowalewski. 2008. The Avalon explosion: evolution of Ediacara morphospace. Science 319: 81–84. Sokolov, B. S., and M. A. Fedonkin. 1990. The Vendian System. Regional Geology. Springer-Verlag, Berlin. 2:38–75. Sperling, E. A., C. A. Frieder, A. V. Raman, P. R. Girguis, L. A. Levin, and A. H. Knoll. 2013. Oxygen, ecology, and the
593
Cambrian explosion of animals. Proceedings of the National Academy of Sciences USA 110:13446–13451.
Sperling, E. A., C. Carbone, J. V. Strauss, D. T. Johnston, G. M. Narbonne, and F. A. Macdonald. 2015. Oxygen, facies, and secular controls on the appearance of Cryogenian and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada. Geological Society of America Bulletin. doi: 10.1130/B31329.1.
Stanley, S.M. 1976. Ideas on the timing ofMetazoan diversification. Paleobiology 2:209–219.
Steiner, M., and J. Reitner. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology 29:1119–1122.
Tarhan, L. G., M. L. Droser, and J. G. Gehling. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25:823–830.
Tarhan, L. G., M. L. Droser, J. G. Gehling, andM. P. Dzaugis. 2015. Taphonomy and morphology of the Ediacaran form genus Aspidella. Precambrian Research 257:124–136.
Van Kranendonk, M. J., J. G. Gehling, and G. A. Shields. 2008. Precambrian. Pp. 23–36 in J. G. Ogg, G. Ogg, and
F.M.Gradstein, eds., The Concise Geologic Time Scale. Cambridge University Press, Cambridge.
Vickers-Rich, P., A. Y. Ivantsov, P. W. Trusler, G. M. Narbonne, M. Hall, S. Wilson, C. Greentree, M. A. Fedonkin, D. A. Elliot, K. Hoffmann, andG. I.CSchneider. 2013. Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia. Journal of Paleontology 87:1–15.
Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, south Australia. Palaeon- tology 15:197–225.
Waggoner, B. M. 1999. Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology 25:440–458.
——. 2003. The Ediacaran biotas in space and time. Integrated Comparative Biology 43:104–113.
Warren, L. V., T. R. Fairchild, C. Gaucher, P. C. Boggianai, D. G. Poiré, L. E. Anelli, and J. C. G. Inchausti. 2011. Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23:383–389. Weaver, P. G., M. A. S. McMenamin, and R. C. Tacker. 2006. Paleoenvironmental and paleobiogeographic implications of a new Ediacaran body fossil from the Neoproterozoic Carolina Terrane, Stanly County, North Carolina. Precambrian Research 150:123–135.
Wilby, P. R., J. N. Carney, and M. P. A. Howe. 2011. A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean. Geology 39: 655–658.
Williams, H., and A. F. King. 1979. Trepassey map area, Newfoundland. Geological Survey of Canada Memoir 389:1–24.
Wood, D. A., R. W. Dalrymple, G. M. Narbonne, J. G. Gehling, and M. E. Clapham. 2003. Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences 40:1375–1391.
Wood, R. A., J. P. Grotzinger, and J. A. D. Dickson. 2002. Proter- ozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:2383–2385.
Xiao, S., and M. Laflamme. 2009. On the eve of animal radiation: phylogeny, ecology, and evolution of the Ediacara biota. Trends in Ecology and Evolution 24:31–40.
Xiao, S., X. Yuan, M. Steiner, and A. H. Knoll. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology 76:347–376.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192