search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
718


MICHAEL FOOTE


Comparison with Coverage-based Estimation Coverage methods are based on estimating


the proportion of species abundances or occur- rences represented by a sample (Good 1953); the most notable paleontological application is Alroy’s (2010a,b) shareholder quorum sub- sampling algorithm. Chao et al. (2015a: pp. 1198–1199) used a generalization of cover- age theory to adjust k/n for individual species. They fit a two-parameter correction factor that, intuitively, assumes a declining exponential function, so that the larger the value of k, the smaller the correction. The parameters can be estimated, because coverage theory predicts the relationship between (1) the sum of occupancy probabilities of the sampled spe- cies, raised to an integral power defining the order of coverage; and (2) the complete suite of values of k/n (Chao et al. 2015a: eqs. D.6, D.7). The first-order coverage is the proportional sum of occupancy probabilities attributable to the sampled species. The complementary pro- portion represents the unsampled species, and the number of these unsampled species— actually a lower bound—can also be estimated (Chao 1987). In this way, the true mean occupancy probability can be estimated for the sampled species, the unsampled species, and therefore the combination of the two. The estimation of coverage does not hinge on assuming any particular distribution. The coverage-estimated distribution of occupancy probabilities for the sampled species differs fromthat developed herein insofar as, with the coverage method, all sampled species with the same value of k are inferred to have the same, constant occupancy probability (cf. Fig. 5D); thus, the inferred probability distribution for sampled species is discrete. For the sake of illustration, Chao et al. (2015a,b) assume that the unsampled species follow a geometric distribution, but this assumption is not crucial to the method and has no bearing on the estimated mean occupancy probability of sampled or unsampled species. Figure 12 compares the occupancy probability distributions estimated with the two methods, applied to the data of Figure 5 (Chao et al. 2015b; Supplementary Data). The observed sumPk=n is equal to 37.46. This provides an estimate of the


(A) 1.0 0.8 All taxa


Coverage theory (unsampled taxa) Coverage theory (sampled taxa) Log-normal fit


0.6


0.4


0.2


0.0 (B) 1.0 0.8 Sampled taxa


0.6


0.4


0.2


0.0


0.00 0.05 0.10 0.15 0.20 0.25 0.30 Occupancy probability


FIGURE 12. Estimated distribution of occupancy


probabilities for Sandbian genera (see Fig. 5), based on log- normal fit (dotted curve) and coverage-based analysis (bars). For sampled genera, height ofbarsisproportionaltothe number of genera with the corresponding occupancy probability. Unsampled genera are represented by a distribution of occupancy probabilities; in this instance they range only from 0.01260 to 0.01263 and so are depicted as a single, dashed bar in A. In this case, the coverage-estimated mean occupancy probability of unsampled genera is nearly thesameasthatofgenerawith k=1 (left-most solid bar), but this is not a general feature of the method. Other than one being discrete and the other continuous, the two methods yield similar distributions for sampled genera (B), whereas the log-normal fit yields lower mean probabilities for unsampled genera and therefore for all genera combined.


sum of occupancy probabilities, including both sampled and unsampled taxa (Chao et al. 2015a: Appendix D); thus, the key issue is how that


Density or probability (scaled to maximum)


Density or probability (scaled to maximum)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192