search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
LOCOMOTION IN TRIADOBATRACHUS


crown-group anurans diversified, as is attested by the Jurassic salientians Prosalirus bitis (Shubin and Jenkins 1995) and Vieraella herbsti (Báez and Basso 1996). Since then, this general body plan has been highly conserved, despite extant taxonomic and ecological diversity observed in frogs, including a variety of locomotor capabil- ities and specializations (Emerson 1978; Roček 2000; Handrigan and Wassersug 2007). The latter includes strong jumping, hopping, burrowing, walking, swimming, climbing, and even gliding (Emerson 1978, 1979; Emerson et al. 1990), albeit a basic pattern of synchronous bilateral movements of the hindlimbs to propel a short, rigid body underlies several of these locomotor behaviors, both on land or underwater (Nauwelaerts and Aerts 2002). Locomotion in anurans has been investigated


for decades, with several studies converging, in that different aspects of postcranial morphology, mainly limb proportions and features of the sacro-caudo-pelvic complex, correlate to a varying degree with locomotor modes (Zug 1972, 1978; Emerson 1976, 1979, 1988; Gomes et al. 2009; Essner et al. 2010; Reilly and Jorgensen 2011; Jorgensen and Reilly 2013; Enriquez-Urzelai et al. 2015). Among locomotor modes, jumping has generally been considered to have evolved early in salientian history, together with most prominent features of the anuran Bauplan (e.g., Gans and Parsons 1966; Jenkins and Shubin 1998; Přikryl et al. 2009; Sigurdsen et al. 2012; but see Reilly and Jorgensen 2011 for an alternative view), although this hypothesis has derived from studies that did not incorporate an explicit phylogenetic framework. In any case, the anuran body plan and behavior depart considerably from an ancestral tetrapod condition with a locomotor pattern similar to that seen today in salamanders, which move with lateral bending of the spine and asymmetrical movements of their short limbs (Karakasiliotis et al. 2013). It is noteworthy that the fossil record


shows meager evidence of this evolutionary transition, with only two notable exceptions. The earliest known salientians Czatkobatrachus polonicus (Evans and Borsuk-Białynicka 1998) and Triadobatrachus massinoti (Piveteau 1936), both from the Early Triassic, have been


613


considered as representing an intermediate stage in the acquisition of the anuran Bauplan (Jenkins and Shubin 1998; Roček and Rage 2000; Reilly and Jorgensen 2011). This is most apparent in the peculiar combination of features of T. massinoti, which includes a high number of presacral vertebrae (14) compared with anurans, several discrete caudal vertebrae (at least 6) instead of the urostyle, a sacral vertebra bearing free ribs, moderately elongated ilia, hindlimbs slightly longer than the forelimb, and unfused elements of the zeugopodia (Rage and Roček 1989). In this context, the origin of the anuran Bauplan and saltatory locomotion and the subsequent evolution in early anurans could not be fully understood without considering the basal locomotor capabilities of the earliest salientians in a phylogenetic context. Therefore, we aim to elucidate the main locomotormode of the early salientian T. massinoti with a multivariate approach in an explicit evolutionary context, using linear morphometrics of the major skeletal elements of the paired limbs. Correlation of these morphometric traits with locomotion in amphibians was tested using multivariate statistics and comparative phylogenetic methods. A discriminant func- tion analysis was performed to assess the ability of transformed morphometric variables to discriminate locomotor groups and to infer the locomotor capabilities of T. massinoti. Our findings, which contrast with some recent hypotheses (Jenkins and Shubin 1998; Přikryl et al. 2009; Sigurdsen et al. 2012), indicate that some distinct features of the anuran Bauplan were not originally linked to a saltatory locomotion.


Materials and Methods Taxonomic Sample.—Observations of


T. massinoti were based on a high-resolution mold of the holotype MNHN MAE126 kindly provided by Ana M. Báez (Fig. 1). The comparative sample (n=188 individuals) primarily included extant limbed amphibians (Anura + Caudata), representing 55 species and 21 families of frogs and 17 species and five families of salamanders (sensu Frost 2015;


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192