search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
588


BOAG ET AL.


FIGURE 6. Relative water-depth contour averaging of localities with ordinated Ediacaran taxa overlain. From left to right: (11) slope/basin; (10) outer shelf (below SWWB); (9) middle shelf (well below FWWB, above SWWB); (8) inner shelf (between FWWB and SWWB); (7) lower shoreface (above FWWB); (6) middle shoreface; (5) upper shoreface; (4) reef margin complex. Not significant: (3) lagoonal/restricted; (2) peritidal (intertidal); (1) fluvial/deltaic. Overlain dashed polygons represent the Waggoner (2003) Avalon, White Sea, and Nama assemblages.


as Rangea, Charnia, Pteridinium, and Charnio- discus are repeatedly found in eurytopic water depths ranging from offshore middle shelf (depth rank 10: [Nil_mf], [Nil_sf]) to middle shoreface (depth rank 6: [Nam_hf]), with isolated occurrences of Namalia in depths as great as slope/basinal (depth rank 11: [SJb_Nor2]) and Charniodiscus as shallow as upper shoreface (depth rank 5: [Nil_ss]) (Bouougri and Porada 2007; Gehling and Droser 2013; Narbonne et al. 2014). Addition- ally, many of these taxa also display extremely long stratigraphic ranges (Narbonne et al. 1997; Fedonkin et al. 2007a, and references therein; Grazhdankin et al. 2008; Liu et al. 2013; Narbonne et al. 2014). These results provide strong global evidence that depauperate Nama communities were composed of stratigraphi- cally long-ranging cosmopolitan survivors with broad environmental and likely ecologi- cal tolerances. In contrast, although White Sea localities with apex diversity such as Nilpena (Australia) share similar bathymetry [Nil_ss], Nil_wb], [Nil_df] to those in Namibia [Nam_hf], [Nam_sw], [Nam_aa], older envir- onmentally tolerant taxa such as Dickinsonia


and Tribrachidium (see Gehling and Droser 2013; Hall et al. 2015) are conspicuously absent from later Nama communities. Previous work- ers have suggested this absence of polyfacies taxa in the latest Ediacaran could indicate a true global extinction signal occurring abruptly at the end of the White Sea; however, it was presumed premature to conclude that the low-diversity terminal Nama assemblages represent evidence of either early extinction or changed preservational circumstances (Gehl- ing and Droser 2013). As we find globally a high correlation between remaining Ediacara taxa in the present Nama assemblage and large bathymetric-range tolerance, this provides support for a model in which surviving taxa were ecological generalists that were able to colonize a latest Ediacaran Period (<549Ma) punctuated by conditions that were now limiting to preceding Ediacarans until their ultimate disappearance at the Proterozoic/ Cambrian boundary (Laflamme et al. 2013; Darroch et al. 2015). Clearly, there were likely many other direct,


indirect, and resource gradients that may have controlled the distribution of Ediacaran taxa.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192