search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MEASURING OCCUPANCY (A)


20 25 30


15 10


5 0 0.00 (B)


0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35


(C) 1.0 0.8 0.6 0.4 0.2 0.0 0.00 0.02 0.04 0.06 0.08 Mean occupancy probability (p) 0.10 n = 50


Reference: binomial with constant occupancy probability


0.05 0.10 0.15 Occupancy probability (p) n = 50 0.20


711 p = 0.05


exponential ( = 1 p) uniform on (0,0.1) log-normal (µlog = 3.78, log = 1.2) log-normal (µlog = 3.12, log = 0.5)


“truncated log-normal.” Note that this is a different usage of a term that has been used to refer to left-truncated distributions of species abundance data, which are analogous to k rather than p (Preston 1948; Slocomb et al. 1977; McGill 2003). When p is expressed on an arithmetic scale,


02468 10 Number of sites occupied (k)


the distribution is right skewed, just as occur- rence and occupancy measures often are, but it also has a mode, which seems biologically realistic. If occupancy probability reflects geo- graphic range, for instance, a distribution with peak probability at zero, such as the beta(α, β) distribution with α < 1 (Appendix), would imply that there are more species occupying a postage stamp–sized piece of real estate than those with some minimum viable range well above such a theoretical minimum. (Examples of distributions of k with a mode at k=1 include the log-series and Zipf [Buzas et al. 1982; Wagner et al. 2006].) The log-normal also has some rationale for occupancy, insofar as such a distribution is expected to result as the product of many biological factors, such as geographic range, local abundance, niche breadth, and availability of suitable habitat, as well as aspects of sampling, such as human effort and, in the case of paleontology, avail- ability of outcrop and intrinsic preservation potential. In a similar vein, Wagner and Marcot (2013) have demonstrated that a log-normal distribution tends to provide a good model for paleontological sampling rates. As noted above, these occupancy probabilities neces- sarily reflect the joint probability that a taxon in fact lived at a given site and that it was detected. The approach assumes that occupancy and detection probabilities are properties of species and overlooks the fact that these may vary among sites. I will return to this issue below.


p exponential ( = 1 p) p uniform on (0,2p) p log-normal ( log = 1.2) p log-normal ( log = 0.5) p constant


FIGURE 4. Examples of variable distributions of occupancy probability. A, Four distributions that all have


the same mean value, p ¼ 0:05. B, Corresponding probability distributions of occupancy, k, with binomial distribution (i.e., constant p) for comparison. C, Probability that k>0 as a function of p and shape of distribution (inset shows detail of highlighted area). Probability that k>0 is generally lower for variable distributions than for constant p, especially if the distribution is right skewed.


Pr(k >0)


Probability


Probability density


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192