search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
590


BOAG ET AL.


be argued for the absence of many White Sea taxa in older, deep-water Avalonian strata. Overall, these paleoenvironmental attributes are in opposition to the core requirements of index fossils, potentially lessening the strength for either of the Avalonian or White Sea assemblages to be used as discrete faunal stages to demarcate Ediacaran biostratigraphy. The Nama Assemblage (549–541 Ma), mean-


while, appears to be a unique faunal stage in the terminal Ediacaran, defined by a global loss of diversity, coincident with the survival of bathymetrically unrestricted, long-ranging Ediacara-type taxa. In an extinction scenario, ecological theory predicts surviving faunal communities should be composed of generalist taxa with broad niche tolerances (Darroch et al. 2015); this appears to be directly reflected by database results. These remaining biota are coeval with the globally occurring, mineralized taxon Cloudina. Easily recognizable and distributed in carbonate stratigraphy world- wide, it appears to be an excellent index fossil candidate for a terminal Ediacaran stage–level subdivision, indicative of a globally correlative biozone ca. 549–541 Ma. The final establish- ment of a robust Ediacaran biostratigraphy is one step that will ultimately allow for temporal integration of fossil, biological, and environ- mental records to assess macroevolutionary patterns on the eve of the Cambrian radiation.


Acknowledgments We thank P.Wagner and E. Sperling for their


helpful discussion and comments. T.H.B. was supported by the University of Toronto,MaryH. Beatty Fellowship, and National Sciences and EngineeringResearchCouncil ofCanada–Canada Graduate Scholarship-Master’s; S.A.F.D. thanks the Smithsonian National Museum of Natural History for financial support; and M.L. thanks the Connaught Foundation, National Sciences and Engineering Research Council of Canada, and National Geographic Society for generous funding.


Literature Cited


Amthor, J. E., J. P. Grotzinger, S. Schröder, S. A. Bowring, J. Ramezani, M. W. Martin, and A. Matter. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology 31(5):431–434.


Babcock, L. E., A. M. Grunow, G. R. Sadowski, and S. A. Leslie. 2005. Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 220:7–18.


Baselga, A. 2010. Partitioning the turnover and nestedness com- ponents of beta diversity. Global Ecology and Biogeography 19:134–143.


Baselga, A., andD.L.Orme. 2012. Betapart: anRpackage for the study of beta diversity. Methods in Ecology and Evolution 3:808–812. Bengston, S. M., and Y. Zhao. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science 257:367–369.


Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland). In E. Landing, G. M. Narbonne, and P. M. Myrow eds. Trace fossils, small shelly fossils and the Precambrian–Cambrian boundary.NewYork State Museum and Geophysical Survey Bulletin 463:8–9. Billings, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science 6:478.


Bosak, T., D. J. G. Lahr, S. B. Pruss, F. A.Macdonald, A. J. Gooday, L. Dalton, and E.D.Matys. 2012. Possible early Foraminiferans in post-Sturtian (716–635 Ma) cap carbonates. Geology 40(1):67–70.


Bouougri, E. H., and H. Porada. 2007. Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. Journal of African Earth Sciences 48:38–48.


Bouougri, E. H., H. Porada, K. Weber, and J. Reitner. 2011. Sedi- mentology and palaeoecology of Ernietta-bearing Ediacaran deposits in southern Namibia: implications for infaunal vendo- biont communities. Advances in Stromatolite Geobiology: Lecture Notes in Earth Sciences 313:473–506.


Bowring, S. A., J. P. Grotzinger, C. E. Isachsen, A. H. Knoll, S. Pelechaty, and P. Kolosov. 1993. Calibrating rates of early Cambrian evolution. Science 261:1293–1298.


Boynton,H. E., and T. D. Ford. 1979. Pseudovendia charnwoodensis— a new Precambrian arthropod from Charnwood Forest, Leicestershire. Mercian Geologist 7:175–177.


——. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist 13:165–182.


——. 1996. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England— revision of nomenclature.Mercian Geologist 14:3.


Brasier, M. D.,G. Shields, V. N. Kuleshov, and E.A. Zhegallo. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia. Geological Magazine 133(4):445–485.


Brasier, M. D., J. B. Antcliffe, andR.H. T.Callow. 2010. Evolutionary trends in remarkable fossil preservation across the Ediacaran– Cambrian transition and the impact of metazoan mixing. In P. A. Allison and D. J. Bottjer, eds. Taphonomy: process and bias through time. Aims and Scope Topics in Geobiology 32:519–567.


Brasier, M. D., J. B. Antcliffe, andA.G. Liu. 2012. The architecture of Ediacaran fronds. Palaeontology 55:1105–1124.


Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft bodied fossils. Annual Review of Earth and Planetary Sciences 31:275–301.


Budd, G. E., and S. Jensen. 2015. The origin of the animals and a “Savannah” hypothesis for early bilaterian evolution. Biological Reviews. doi: 10.1111/brv.12239.


Burzynski, G., and G. M. Narbonne. 2015. The discs of Avalon: relating discoid fossils to frondose organisms in the Ediacaran of Newfoundland, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 434:34–45.


Cai, Y., J. D. Schiffbauer, H. Hua, and S. Xiao. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: pyritization,


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192