search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EDIACARAN DISTRIBUTIONS IN SPACE AND TIME


Oceanographic factors such as temperature, nutrient availability, and biologically relevant periods of oxygenation have profound impacts on the distribution of animals in modern marine environments that certainly translate into the stratigraphic record. These factors will undoubtedly require attention in the future as novel geochemical proxies are applied to the rock record.


Conclusions The Ediacaran Period spans a unique and


dynamic interval in the paleontological record, providing insight into both early metazoan origins at the end of the Proterozoic and emergence of profound biological and environ- mental drivers that would facilitate the subse- quentCambrian radiation of animal complexity. Ultimately, these mechanisms rely on well- defined chronostratigraphic constraints to illus- trate any temporal interrelationships between biology and the environment on evolutionary patterns. The lack of a clear biostratigraphic record for the Ediacaran Period is a significant barrier that hinders such correlation. Our updated paleontological database sup-


ports the taxonomic integrity of the traditional Avalon, White Sea, and Nama assemblages as coherent, distinct faunal associations as origin- ally proposed in Waggoner (2003). However, not reflected in earlier studies is the high level of taxonomic disparity that exists in new localities such as in China when compared to the classic assemblages in Newfoundland, Russia, Australia, and Namibia. This suggests that the emerging taxonomic heterogeneities that presently exist are likely to grow as worker effort increases the known diversity in both novel and present localities. With time, this trend could potentially challenge current Ediacaran assemblage concepts and will require continued revision of the global Ediacaran data set. Taphonomic results expand on previous


studies and demonstrate that lithology (and paleoenvironment) is largely decoupled from the pervasive moldic preservation, occurring in both siliciclastic and carbonate lithofacies and at depths ranging from deep-water slope/basinal to upper shoreface. This ubiquity is reflected


589


within ordination plots, as convex hulls for each lithology show limited separation toward any of the traditional assemblages. Some styles of moldic preservation such as Fermeuse and to a lesser degree Flinders appear to select against complete preservation of epifaunal frondose taxa. However, shallower-water localities such as Nilpena, Australia, are an exception to this trend, preserving a low diversity of frondose-specifictaxainotherwise


highly


diverse communities. This may therefore point to other mechanisms controlling the absence of diverse frondose communities in shallow-water environments. The Ediacaran carbonaceous compression record meanwhile displays mark- edly different taxonomic trends, and is highly correlated with shale and mudstone lithologies. The current carbonaceous compressionwindow appears to select against many Ediacara-type taxa; however, due to the highly underrepre- sented nature of this taphonomic mode, carbo- naceous compression settings are likely to be a productive facies for paleontological research moving forward. Beyond taphonomy, both geologic time and


bathymetry play an important role in under- standing the Avalon, White Sea, and Nama assemblages, at least in a stratigraphic context. Despite the early first appearance of Ediacara biota in the ~579Ma deep-water Drook Forma- tion, Newfoundland, new geochronological data now demonstrate that the taxonomically and geographically distinct Avalonian and White Sea assemblages were likely temporally coeval at least during the Avalon–White Sea transition ca. 560–557Ma (Noble et al. 2014). Furthermore, both these assemblages are tightly constrained to narrow bathymetric ranges and are therefore likely to be disparate paleoenvir- onmental–ecological biotopes that were spa- tially restricted in marine settings. This patchy paleoenvironmental distribution could account for significant stratigraphic gaps in the fossil record, since bathymetrically restricted taxawill be strongly affected by gradual changes in paleoenvironmental settings. This is likely to be the case in the youngest sections of both New- foundland and Charnwood Forest, where shal- lowing upward successions do not preserve the diversefrondoseassemblagesthatoccur older, deep-water sections. Conversely, this can


in


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192