search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
702


JOSHUA MIKE ET AL.


FIGURE 5. k-means was performed with the MDS embedding of 100% resolution DCP, resulting in the figures shown. Left, k=2; center, k=3; right, k=4. These divisions help support the results of our aggregate clustering.


the pyriform and godoniform groups quite naturally. On the other hand, it appears that the vertical component in the plot captures the concavity between ambulacra. However, since the MDS algorithm does not embed the data set directly onto coordinate axes (as does the alternative method, PCA), these interpreta- tions are rather hard to prove. The final step in the analysis consists of


deploying AC on the dissimilarity matrices DCP and DAt at all five resolutions. Like MDS, this method also does not require the matrices to be of equal size. Dendrograms of these clusters can be seen (Fig. 6).Wecan also see the progression of variance as clusters are aggre- gated (Fig. 7). This progression of variance helps us to determine that there are three clusters present in our data. Figure 5, which depicts k-means as performed on our MDS embedding, also supports our clustering choice. k-means with k=3 splits our data into the same three groups as the AC does. A visual analysis of the AC outcome of


Figure 6 shows that the CP-distance dissim- ilarity matrix manages to clearly separate P. tulipiformis from the cluster containing P. fredericki and P. spicatus samples. This improves the result of the comparison study by Atwood and Sumrall (2012), in which the separation of P. tulipiformis and P. fredericki is incomplete, and a few P. fredericki samples are (incorrectly) categorized as P. tulipiformis. Furthermore, while both old and new methods separate P. pyriformis from the other species, CP distance–based analysis does a better job. Indeed, it separates the data into two distinct,


large clusters that correspond to the pyriform and godoniform groups; moreover, it is evident that this clustering happens at a coarser level than the separation of species. Finally, we see that as the resolution of scans decreases, the advantages of CP-distance method over the traditional techniques disap- pear: at 20% resolution, CP distance no longer separates P. tulipiformis and P. fredericki better than DP distance. However, even at 5% resolution, the larger clusters of the pyriform and godoniform groups still clearly separate, and some (coarse) information still can be obtained. Figure 7 depicts the results of our cross-


validation procedure. For each trial, Ward AC was used to cluster 90% of our data. These clusters were used to classify the remaining 10%, and these were compared to the bench- mark group. The details of the procedure can be seen in Table 2.


Discussion One of the most evident advantages of the


CP distance–based methodology over the DP- distance procedure is the speed at which samples can be analyzed. Although both analyses require specimens to be scanned, the proposed methodology nearly eliminates the tedious (and human error–prone) landmark- picking phase. An evident advantage of the traditional method in the blastoids example is that it can be deployed using only a portion of the surface scan, because the full set of land- marks lies entirely on one side of the specimens


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192