search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
BODY-MASS TRENDS


653


TABLE 4. Comparison of body-mass data from coastal and inland sites. Mean mass (in kg) and 95% confidence intervals are shown for each genus (samples in which n=1 do not include confidence intervals). Bay Area, San Joaquin valley, and transverse ranges biogeographic regions are considered coastal; western Nevada and Mojave Desert biogeographic regions are considered inland.


Taxon


Ba1 Microtomarctus Ba1 Hypohippus Ba1 Archaeohippus Ba1 Scaphohippus Ba1 Acritohippus Cl2 Hipparion Cl2 Pliohippus Cl3 Hipparion


Cl3 Neohipparion Cl3 Pliohippus


Bay Area


San Joaquin valley Transverse ranges Western Nevada Mojave Desert 15.44 ± 0.62


15.30


202.22 40.78


226.08 ± 107.57 409.23 ± 190.89 202.86 ± 40.65 126.46 ± 56.07


274.26 ± 40.70


46.26 ± 20.17 148.70 ± 24.71 169.73 ± 50.60


196.82 ± 36.53 273.69 ± 87.78 395.37 ± 136.50 492.17 ± 61.75


early Arikareean), the NALMA subdivisions that contained sufficientmaterial to reconstruct latitudinal gradients were all relatively short (Ar1, 2 Ma; Ba1, 1.2Ma; Ba2, 2.3 Ma; Cl3, 1Ma; Hh2, 0.7Ma; Hh4, 1 Ma; Tedford et al. 2004). These units are shorter in time than the subepochs used as bins in the studies by Smith et al. (2010) and Saarinen et al. (2014), both of which found a correlation between body size and temperature, and are comparable in dura- tion to the million year bins widely used in paleobiological analyses (e.g., Hunt and Roy 2006; Hopkins, 2007; Liow et al. 2008). As discussed above, the comparison between coastal and inland sites in California and Nevada suggests that the effects of small-scale environmental differences between localities are minimal compared with those of large- scale climatic trends. While having precise dates and paleoclimatic reconstructions for a larger number of localities would certainly allow for a more robust analysis, the length of the temporal bins used in this analysis should be sufficient for observing macroecological trends through time. A constant concern in paleontology is the


quality of the fossil record. Not only are whole ecosystems rarely preserved, but an already incomplete record is often further biased by differential preservation, collection (Behrensmeyer et al. 2000), and description (Davis and Pyenson 2007), creating tapho- nomic noise that can obscure true biological signals if insufficiently large samples are considered. This is especially a concern for taxa such as canids and other carnivores that


234.26 290.95


476.10 ± 355.57 404.70


are well sampled and extensively studied but are generally rare within ecosystems and for taxa such as rodents that are common within ecosystems but are either infrequently pre- served or undercollected. Sample size is demonstrably driving at least one signal in this study: late Clarendonian Epicyon shows a strong (though not significant) negative corre- lation with latitude, but this is almost certainly the result of an incomplete sample. Wang et al. (1999) note that two species of Epicyon are present at late Clarendonian sites throughout North America: the giant E. haydeni and the smaller E. saevus. Both are present in the Juntura Formation of Oregon (Orcutt and Hopkins, 2011), but only E. haydeni is repre- sented by dental material from the coeval Contra Costa Group of the San Francisco Bay Area.Were the sample size from this site larger, it would almost certainly include E. saevus, likely obscuring the see- mingly strong latitudinal gradient. The small sample size of many other canid taxa makes it possible, or even likely, that many of the patterns observed here do not reflect biological trends. However, sample size cannot be invoked to explain every body-size gradient—or lack thereof—observed in Oligo-Miocene canids. Mesocyon is both extre- mely common and extremely well sampled in Arikareean faunas (Wang 1994) and is present in large numbers in the latitudinally distant John Day (n=16) and Otay formations (n =9). While the Arikareean is one of the coldest intervals of the Oligo-Miocene, there is no evidence of a significant difference in Mesocyon


19.06 ± 7.25 207.42 46.90


174.85 ± 29.61 168.04 ± 58.98 319.81


336.29 ± 88.21 461.21


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192