search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Paleobiology, 42(4), 2016, pp. 707–729 DOI: 10.1017/pab.2016.24


On the measurement of occupancy in ecology and paleontology Michael Foote


Abstract.—Occupancy statistics in ecology and paleontology are biased upward by the fact that we generally do not have solid data on species that exist but are not found. The magnitude of this bias increases as the average occupancy probability decreases and as the number of sites sampled decreases. A maximum-likelihood method is developed to estimate the underlying distribution of occupancy probabilities of all species based only on the sample of observed species with nonzero occupancy. The method is based on determining the probability that the number of occupied sites will take on any specific value for a given occupancy probability, integrated over the entire distribution of occupancy probabilities. If the shape of the underlying distribution is well modeled, the resulting occupancy estimates circumvent the bias inherent in failing to observe some species and the fact that this bias depends on the number of sites. For occupancy data on marine animal genera drawn from the Paleo- biology Database, the underlying distribution is reasonably approximated as a right-truncated log- normal, but the methods developed can be extended to any distribution. Examples are presented to illustrate some observations that are robust and others that need to be revised in light of this bias correction. The method is compared to a recently developed, distribution-free approach to the same problem.


Michael Foote. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A. E-mail:mfoote@uchicago.edu.


Accepted: 9 June 2016 Published online: 23 August 2016 Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.5sr24


Estimating the occupancy of a species or


higher taxon—the number or proportion of sites, collections, geographic areas, or other sampling units in which it is found—has many applications in ecology and paleontology. Here I will briefly discuss two facets of a bias in the measurement of occupancy and then suggest a solution that allows estimation of the prob- ability distribution of occupancy for a set of species, including unsampled species. For simplicity I will generally refer to species and sites, but the discussion applies to biological units at all hierarchical levels and to collections, quadrats, and so on. For simplicity I will not


consider problems raised by species misidenti- fications (cf. Ferguson et al. 2015). Statement of the Problem


Suppose there are n sites and S observed


species. Any number of species can occupy a given site, and a species can occupy any number of sites up to n. Let ki be the number of sites known to be occupied by species i.


© 2016 The Paleontological Society. All rights reserved. B0 k; n; p ðÞ¼


We would like to estimate the value of p, the probability of site occupancy. It would seem straightforward to estimate pi for species i as ki/n, and themean probability for a collection of


species as k=n ¼Pki=n=S. But we generally do not have a reliable roster of species with k=0, meaning that the species reallywere present in a specified area at a particular time but were not found at any sampled sites. Therefore our observed values of k are necessarily greater than zero and k/n is biased upward (Fig. 1). (This situationiscommonin ecology,inpartbecause so many species are rare [Fisher et al. 1943; Preston 1948; Rabinowitz 1981], and is not merely a paleontologist’s headache reflecting the incompleteness of the fossil record.) Specifi- cally, if p is a constant, the probability that k sites will be occupied, given that k is greater than zero, is equal to a conditional binomial:


pk 1p


n k


ðÞ nk 1 1p ðÞ n ; (1)


where the denominator is the probability that k>0, and the expected number of sites occupied


0094-8373/16


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192