search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MEASURING OCCUPANCY


species with k=1, which often account for a plurality of data. Second, we could fit the distribution of occupancy probabilities to all species, extract the part of the distribution corresponding to taxa with any given value of k (including k=0) (Fig. 5D), and use themean or median of this subdistribution as a point estimate. The latter approach is preferable, but it is


worth remembering that the species actually sampled represent an upwardly biased subset of all species, and that, for a fixed underlying distribution of occupancy probabilities, the sampled species progressively represent the higher part of this distribution as the number of sampled sites decreases (Fig. 15). For example, using the distribution of Figure 5, sampled species have a mean occupancy


probability of pk>0 ¼ 0:0356 if n=50 and 0.0301 if n=100 (eq. A14). This fact may seem like a nuisance, but point estimates for indivi- dual species should vary with n, because, all else being equal, species with a given value of k do in truth have a higher occupancy probability, on average, if n is lower. The situation with point estimates is ana-


logous to that with the mean duration of a distribution of species versus the duration of a single species. Modeling the form of the true duration distribution and how it is affected by incomplete sampling allows an unbiased estimate of this distribution, even though observed stratigraphic ranges are truncated and some species are not recorded at all (Foote and Raup 1996; Foote 1997; Solow and Smith 1997). However, individual species that are sampled represent an upwardly biased subset of the entire distribution (Foote and Raup 1996: Fig. 2). Extinction selectivity is another area in


which revised occupancy estimates may make a difference. In particular, bias correction could affect the details of how much the odds of survival increase per unit increase in occu- pancy (Payne and Finnegan 2007). Moreover, the prospect of estimating p for species that are known to exist but happen not to be sampled could provide an alternative to assigning arbitrary minimum values (Finnegan et al. 2008) or ignoring them altogether (Foote and Miller 2013).


0.20


721


µlog = 4.55 log = 1.24


pmax = 0.275 0.10


0.05


0.02


k > 0 k = 1 k = 2 k = 3 k = 4 k = 5


0.01 2 5 10 20 Number of sites (n)


FIGURE 15. Predicted mean occupancy probability for subsets of genera with selected values of k, as a function of number of sites, n. Curves are calibrated to the parameters fit to the Sandbian stage (see Fig. 5). Even if


the underlying distribution of occupancy probabilities is fixed, the part of the distribution sampled by genera with a given value of k varies with n.


The Permo-Triassic example (Fig. 9) shows


that some details of the temporal pattern of occupancy vary with the spatial resolution of a site or sampling unit. In the data analyzed herein, sampling is at a fine spatial scale, with the equal-area cells defined after the fact, so the number of sampled and unsampled genera is not affected by the resolution imposed. What about bias in the proportion of occupied cells? As resolution increases, that is, as the cell size decreases, both n and k increase, but n increases more rapidly so that k=n decreases, as does estimated mean occupancy probability, p (Table 1). The increase in n would lead us to expect k=n to be less biased with higher resolution, whereas the decline in occupancy probability would lead us to expect the opposite. The former effect is evidently stronger, as the bias, that is, the ratio of k=n to p, decreases with increasing resolution. The aim of this paper has been to estimate an


accurately scaled distribution of occupancy probabilities, from which one can derive means or other statistics, as well as point estimates for individual species. If the goal instead is simply to compare different data sets in terms of the relativemagnitude of theirmean occupancies, then sampling standardization of


50 100


p for subset of species with given value of k


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192