search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Paleobiology, 42(4), 2016, pp. 624–642 DOI: 10.1017/pab.2016.16


Polarity of concavo-convex intervertebral joints in the necks and tails of sauropod dinosaurs


John A. Fronimos, Jeffrey A. Wilson, and Tomasz K. Baumiller


Abstract.—The highly elongated necks, and often tails, of sauropod dinosaurs were composed of concavo-convex vertebrae that provided stability without compromising mobility. Polarities of these concavo-convex joints in the neck and tail are anatomically opposite one another butmechanically equivalent. Opisthocoelous cervical vertebrae and procoelous caudal vertebrae have the convex articular face directed away from the body and the concave articular face directed toward the body. This “sauropod-type” polarity is hypothesized to be (1)more resistant to fracturing of the cotylar rim and(2) better stabilized against joint failure by rotation than the opposite polarity. We used physical models to test these two functional hypotheses. Photoelastic analysis ofmodel centra loaded as cantilevers reveals that neither polarity better resists fracture of the cotylar rim; strain magnitude and localization are similar in both polarities. We assessed the rotational stability of concavo-convex joints using pairs of concavo-convex centra loaded near the joint. Sauropod-type joints withstood significantly greaterweight before failure occurred, a patternwe interpret to be dependent on the position of the center of rotation, which is always within the convex part of the concavo-convex joint. In sauropod-type joints, the free centrum rotates about a center of rotation that lies within the more stable proximal centrum. In contrast, the opposite polarity results in a free centrum that rotates about an internal point; whenthe condyle rotates down and out of joint, the distal endrotates back toward the body, unopposed by ligamentous support. Sauropod-type joints remained stable with greater mobility, more mechanically advantageous tensile element insertions, and greater distal loads than the opposite polarity. The advantages conferred by this joint polarity would have facilitated the evolution of hyperelongated necks and tails by sauropods. Polarity of concavo-convex joints of the appendicular skeleton (e.g., hip, shoulder) is also consistent with the demands of rotational stability.


John A. Fronimos, Jeffrey A. Wilson, and Tomasz K. Baumiller. Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1079, U.S.A. E-mail: jfronimo@umich.edu, wilsonja@umich.edu, tomaszb@umich.edu


Accepted: 14 March 2016 Published online: 27 June 2016 Supplemental material deposited at Dryad: http://doi.org/10.5061/dryad.1p0q9


Introduction Sauropod dinosaurs achieved the largest


body sizes (Alexander 1989) and the longest necks of any terrestrial vertebrate (Taylor and Wedel 2013). The long necks and tails are hypothesized to have been held aloft (Coombs 1975) because trackways lack tail drag marks (e.g., Bird 1941). Sauropod necks and tails were loaded like cantilevers, beams supported at only one end (i.e., the body) and free at the other end. As a result, the forces of weight support were likely experienced as compression of the vertebral centra and tension of the muscles, tendons, and ligaments attaching to the neural arches, as in mammals (Slijper 1946) and extant reptiles (Hoffstetter and Gasc 1969). Unlike a rigid cantilevered beam, however, necks and tails are segmented, with joints between vertebrae held together in life by muscles, tendons, ligaments, and cartilage. Intervertebral joints permit


© 2016 The Paleontological Society. All rights reserved.


mobility but are also potential sites of catastrophic dislocation. In order for sauropods to achieve their characteristic large body sizes and long necks, the intervertebral joints required stabilization against increas- ingly large stresses without compromising the extent of mobility required for survival. One way in which sauropod intervertebral joints may have been stabilized without compromising flexibility is by the evolution of concavo-convex centra (e.g., opisthocoely, procoely) in the neck and, in some lineages, in the tail (J. A. Fronimos and J. A. Wilson unpublished). Previous research on concavo- convex intervertebral joint function in croco- dylians has suggested they resist dislocation by shear due to the nesting of one centrum in another and the increased surface area of contact relative to planar joints (Salisbury and Frey 2001; J. A. Fronimos and J. A. Wilson unpublished).


0094-8373/16


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192