search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Paleobiology, 42(4), 2016, pp. 643–658 DOI: 10.1017/pab.2016.13


Latitudinal body-mass trends in Oligo-Miocene mammals John D. Orcutt and Samantha S. B. Hopkins


Abstract.—Paleecological data allow not only the study of trends along deep-time chronological transects but can also be used to reconstruct ecological gradients through time, which can help identify causal factors that may be strongly correlated in modern ecosystems. We have applied such an analysis to Bergmann’s rule, which posits a causal relationship between temperature and body size in mammals. Bergmann’s rule predicts that latitudinal gradients should exist during any interval of time, with larger taxa toward the poles and smaller taxa toward the equator. It also predicts that the strength of these gradients should vary with time, becoming weaker during warmer periods and stronger during colder conditions. We tested these predictions by reconstructing body-mass trends within canid and equid genera at different intervals of the Oligo-Miocene along the West Coast of North America. To allow for comparisons with modern taxa, body mass was reconstructed along the same transect for modern Canis and Odocoileus.Of the 17 fossil genera analyzed, only two showed the expected positive relationship with latitude, nor was there consistent evidence for a relationship between paleotemperature and body mass. Likewise, the strength of body-size gradients does not change predictably with climate through time. The evidence for clear gradients is ambiguous even in the modern genera analyzed. These results suggest that, counter to Bergmann’s rule, temperature alone is not a primary driver of body size and underscore the importance of regional-scale paleoecological analyses in identifying such drivers.


John D. Orcutt. Department of Biology, Gonzaga University, Spokane, Washington 99258, U.S.A. E-mail: orcutt@gonzaga.edu.


Samantha S. B. Hopkins. Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, U.S.A. E-mail: shopkins@uoregon.edu.


Accepted: 11 February 2016 Published online: 3 May 2016 Supplemental material deposited at Dryad: doi:10.5061/dryad.q8bf1


Introduction Diversity and body-size clines have been


observed along a number of ecological gradi- ents: two of ecology’s foundational studies analyzed trends along elevational (Humboldt and Bonpland 1807) and latitudinal transects (Bergmann 1847), and modern researchers have traced patterns along climatic (e.g., Bradshaw and Holzapfel 2010), water depth (e.g., Smith and Brown 2002), chemical (e.g., Hollister et al. 2010), and other gradients. Such research lays the foundation for the formulation of ecological models: by observing how organisms respond to a wide range of environmental conditions in modern ecosystems, it is possible to predict how the same organisms will respond to environmental changes in the future. These models are critically important to anticipating and mitigating the effects of anthropogenic climate change, but in some cases lack pre- dictive power (as is the case, for example, with ecological niche models of range shifts; Guralnick and Pearman 2010; Davis et al.


© 2016 The Paleontological Society. All rights reserved.


2014). This ispartially because of the complexity of ecological interactions, in which several factors may influence biotic variables. It is also due in part to the complexity of the ecosystems themselves, in which many biotic and abiotic variables influence and are influenced by one another, making it difficult to tease out which variables are most important in shaping biotic patterns (Berteaux et al. 2006). Finally, models of future responses to environmental change based on neontological research are, of necessity, based on biotic variability across environmental regimes for which there is a historical precedent. Even the most conserva- tive estimates of future warming indicate a rapidly increasing divergence fromthe climatic conditions that have characterized the Holocene (Intergovernmental Panel on Climate Change 2014), meaning that any prediction of biotic responses to this change requires extra- polatingwell beyond the range ofmodern data. These last two concerns can be addressed by not only examining biotic clineswithinmodern


0094-8373/16


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192