668
SILVIA PINEDA-MUNOZ ET AL.
results suggest that the dietary categories of Pineda-Munoz and Alroy (2014) strongly correlate with body mass, which suggests that the classification is useful. Additionally, recent research has shown that this classification correlates well with dental morphology (Pineda-Munoz 2015). Fernández-Hernández et al. (2006) statisti-
cally tested some paleoecological methods— ecological diversity analysis (Andrews et al. 1979) and cenograms (Legendre 1986)—to evaluate their power as climate and paleocli- mate estimators. The significance of the individual paleoecological variables used in these methodologies was also examined. The variables were taxonomic affiliation, trophic relationship, locomotion, and body size. The results suggested that body size was the best ecological variable, of those tested, for inferring climate. However, the dietary classification was statistically untested and ambiguous, because frugivorous and granivorous species were put together in a single category. Our data set shows that frugivore and granivore mammals have statistically different body-size ranges (p < 0.05; see Table 1). Thus, including them in a single category masked some ecological signals, whichmay have caused diet to be undervalued as a climatological indicator (Fernández-Hernández et al. 2006). Further- more, the geographical distribution of the frugivorous species in our data set shows a strong correlation between frugivory and tropical and subtropical climates. Thus, if frugivores had been separated from grani- vores, diet would have better discriminated between rain forests and open savannas. This observation reinforces the idea that a more comprehensive dietary categorization can more greatly empower paleoecology.
Acknowledgments We thank M. McCurry and Xuan Zhu for
assistance with GIS analysis. We also thank Nick Chan, David M. Alba, colleagues at Macquarie University and National Museum of Natural History Smithsonian Institution, and two anonymous reviewers for comments and suggestions. S.P.-M. was supported by Macquarie University’s HDR Project Support
Funds and a Peter Buck Predoctoral Research Fellowship from Smithsonian NMNH. A.E. acknowledges the support of the Australian Research Council and Monash University. This is the Evolution of Terrestrial Ecosystems Program publication number 339.
Literature Cited
Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolu- tion in North American fossil mammals. Science 280:731–734.
Alroy, J., P. L. Koch, and J. C. Zachos. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259–288. Andrews, P., and E. N. Evans. 1979. The environment of rama- pithecus in Africa. Paleobiology 5:22–30. Andrews, P., J. M. Lord, and E. M. N. Evans. 1979. Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society 11:177–205.
Bartumeus, F., and J. Catalan. 2009. Optimal search behavior and classic foraging theory. Journal of Physics A 42:434002.
Beeman, L. E., and M. R. Pelton. 1980. Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Bears: Their Biology andManagement 4:141–147.
Bro, R., and A. K. Smilde. 2014. Principal component analysis. Analytical Methods 6:2812–2831.
Brown, J. H., and P. F. Nicoletto. 1991. Spatial scaling of species composition: body masses of North American land mammals. American Naturalist 138:1478–1512.
Burness, G. P., J. Diamond, and T. Flannery. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Pro- ceedingsof theNationalAcademy of SciencesUSA98:14518–14523.
Carbone,C., G. M. Mace, S. C. Roberts,
andD.W.Macdonald. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286–288.
Clauss,M., A. Schwarm, S. Ortmann, W. J. Streich, and J. Hummel. 2007. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comparative Biochemistry and Physiology Part A 148:249–265.
Clauss,M., P. Steuer, D. W. H. Müller, D. Codron, and J. Hummel. 2013. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecol- ogy and dinosaur gigantism. PLoS ONE 8:e68714.
Colon, C. P., and A. Campos-Arceiz. 2013. The impact of gut passage by binturongs (Arctictis binturong) on seed germination. Raffles Bulletin of Zoology 61:417–421.
Demes, B., and N. Creel. 1988. Bite force, diet, and cranial morphol- ogy of fossil hominids. Journal ofHuman Evolution 17:657–670.
Demment, M. W., and P. J. Van Soest. 1985. A nutritional explana- tion for body-size patterns of ruminant and nonruminant herbi- vores. American Naturalist 125:641–672. Eisenberg, J. F. 1981. The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago.
Fernández-Hernández, M.,M.
T.Alberdi, B. Azanza, P. Montoya, J. Morales, M. Nieto, and P. Peláez-Campomanes. 2006. Identifi- cation problems of arid environments in the Neogene– Quaternary mammal record of Spain. Journal of Arid Environ- ments 66:585–608.
Fisher, D. O., and C. R. Dickman. 1993. Diets of insectivorous marsupials in arid Australia: selection for prey type, size or hardness? Journal of Arid Environments 25:397–410.
Fortelius, M., J. Eronen, J. Jernvall, L. Liu, D. Pushkina, J. Rinne, A. Tesakov, and I. Vislobokova. 2002. Fossil mammals resolve
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192